File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Affine Deligne–Lusztig varieties with finite Coxeter parts

TitleAffine Deligne–Lusztig varieties with finite Coxeter parts
Authors
Keywordsaffine Deligne
Lusztig varieties, Coxeter elements
Issue Date1-Jan-2024
PublisherMathematical Sciences Publishers (MSP)
Citation
Algebra & Number Theory, 2024, v. 18, n. 9, p. 1681-1714 How to Cite?
AbstractWe study affine Deligne–Lusztig varieties Xw(b) when the finite part of the element w in the Iwahori–Weyl group is a partial σ-Coxeter element. We show that such w is a cordial element and Xw(b) ̸= ∅ if and only if b satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such w and b, Xw(b) has a simple geometric structure: the σ-centralizer of b acts transitively on the set of irreducible components of Xw(b); and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either A1 or Gm.
Persistent Identifierhttp://hdl.handle.net/10722/359133
ISSN
2023 Impact Factor: 0.9
2023 SCImago Journal Rankings: 1.353

 

DC FieldValueLanguage
dc.contributor.authorHe, Xuhua-
dc.contributor.authorNie, Sian-
dc.contributor.authorYu, Qingchao-
dc.date.accessioned2025-08-22T00:30:26Z-
dc.date.available2025-08-22T00:30:26Z-
dc.date.issued2024-01-01-
dc.identifier.citationAlgebra & Number Theory, 2024, v. 18, n. 9, p. 1681-1714-
dc.identifier.issn1937-0652-
dc.identifier.urihttp://hdl.handle.net/10722/359133-
dc.description.abstractWe study affine Deligne–Lusztig varieties Xw(b) when the finite part of the element w in the Iwahori–Weyl group is a partial σ-Coxeter element. We show that such w is a cordial element and Xw(b) ̸= ∅ if and only if b satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such w and b, Xw(b) has a simple geometric structure: the σ-centralizer of b acts transitively on the set of irreducible components of Xw(b); and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either A1 or Gm.-
dc.languageeng-
dc.publisherMathematical Sciences Publishers (MSP)-
dc.relation.ispartofAlgebra & Number Theory-
dc.subjectaffine Deligne-
dc.subjectLusztig varieties, Coxeter elements-
dc.titleAffine Deligne–Lusztig varieties with finite Coxeter parts-
dc.typeArticle-
dc.identifier.doi10.2140/ant.2024.18.1681-
dc.identifier.scopuseid_2-s2.0-85205267306-
dc.identifier.volume18-
dc.identifier.issue9-
dc.identifier.spage1681-
dc.identifier.epage1714-
dc.identifier.eissn1944-7833-
dc.identifier.issnl1937-0652-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats