File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.2140/ant.2024.18.1681
- Scopus: eid_2-s2.0-85205267306
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Affine Deligne–Lusztig varieties with finite Coxeter parts
| Title | Affine Deligne–Lusztig varieties with finite Coxeter parts |
|---|---|
| Authors | |
| Keywords | affine Deligne Lusztig varieties, Coxeter elements |
| Issue Date | 1-Jan-2024 |
| Publisher | Mathematical Sciences Publishers (MSP) |
| Citation | Algebra & Number Theory, 2024, v. 18, n. 9, p. 1681-1714 How to Cite? |
| Abstract | We study affine Deligne–Lusztig varieties Xw(b) when the finite part of the element w in the Iwahori–Weyl group is a partial σ-Coxeter element. We show that such w is a cordial element and Xw(b) ̸= ∅ if and only if b satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such w and b, Xw(b) has a simple geometric structure: the σ-centralizer of b acts transitively on the set of irreducible components of Xw(b); and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either A1 or Gm. |
| Persistent Identifier | http://hdl.handle.net/10722/359133 |
| ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 1.353 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | He, Xuhua | - |
| dc.contributor.author | Nie, Sian | - |
| dc.contributor.author | Yu, Qingchao | - |
| dc.date.accessioned | 2025-08-22T00:30:26Z | - |
| dc.date.available | 2025-08-22T00:30:26Z | - |
| dc.date.issued | 2024-01-01 | - |
| dc.identifier.citation | Algebra & Number Theory, 2024, v. 18, n. 9, p. 1681-1714 | - |
| dc.identifier.issn | 1937-0652 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/359133 | - |
| dc.description.abstract | We study affine Deligne–Lusztig varieties Xw(b) when the finite part of the element w in the Iwahori–Weyl group is a partial σ-Coxeter element. We show that such w is a cordial element and Xw(b) ̸= ∅ if and only if b satisfies a certain Hodge–Newton indecomposability condition. Our main result is that for such w and b, Xw(b) has a simple geometric structure: the σ-centralizer of b acts transitively on the set of irreducible components of Xw(b); and each irreducible component is an iterated fibration over a classical Deligne–Lusztig variety of Coxeter type, and the iterated fibers are either A1 or Gm. | - |
| dc.language | eng | - |
| dc.publisher | Mathematical Sciences Publishers (MSP) | - |
| dc.relation.ispartof | Algebra & Number Theory | - |
| dc.subject | affine Deligne | - |
| dc.subject | Lusztig varieties, Coxeter elements | - |
| dc.title | Affine Deligne–Lusztig varieties with finite Coxeter parts | - |
| dc.type | Article | - |
| dc.identifier.doi | 10.2140/ant.2024.18.1681 | - |
| dc.identifier.scopus | eid_2-s2.0-85205267306 | - |
| dc.identifier.volume | 18 | - |
| dc.identifier.issue | 9 | - |
| dc.identifier.spage | 1681 | - |
| dc.identifier.epage | 1714 | - |
| dc.identifier.eissn | 1944-7833 | - |
| dc.identifier.issnl | 1937-0652 | - |
