File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Total positivity for matroid Schubert varieties

TitleTotal positivity for matroid Schubert varieties
Authors
Issue Date1-Sep-2025
PublisherSpringer
Citation
Selecta Mathematica (New Series), 2025, v. 31 How to Cite?
Abstract

We define the totally nonnegative matroid Schubert variety $\mathcal Y_V$ of a linear subspace $V\subset\mathbb R^n$. We show that $\mathcal Y_V$ is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats of the oriented matroid of $V$. This closely resembles the regularity theorem for totally nonnegative generalized flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of $V$.


Persistent Identifierhttp://hdl.handle.net/10722/359419
ISSN
2023 Impact Factor: 1.2
2023 SCImago Journal Rankings: 1.715

 

DC FieldValueLanguage
dc.contributor.authorHe, Xuhua-
dc.contributor.authorSimpson, Connor-
dc.contributor.authorXie, Kaitao-
dc.date.accessioned2025-09-03T00:30:24Z-
dc.date.available2025-09-03T00:30:24Z-
dc.date.issued2025-09-01-
dc.identifier.citationSelecta Mathematica (New Series), 2025, v. 31-
dc.identifier.issn1022-1824-
dc.identifier.urihttp://hdl.handle.net/10722/359419-
dc.description.abstract<p>We define the totally nonnegative matroid Schubert variety $\mathcal Y_V$ of a linear subspace $V\subset\mathbb R^n$. We show that $\mathcal Y_V$ is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats of the oriented matroid of $V$. This closely resembles the regularity theorem for totally nonnegative generalized flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of $V$.<br></p>-
dc.languageeng-
dc.publisherSpringer-
dc.relation.ispartofSelecta Mathematica (New Series)-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleTotal positivity for matroid Schubert varieties-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1007/s00029-025-01080-3-
dc.identifier.volume31-
dc.identifier.eissn1420-9020-
dc.identifier.issnl1022-1824-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats