File Download

There are no files associated with this item.

Supplementary

Conference Paper: Tackling Data Heterogeneity in Federated Learning via Loss Decomposition

TitleTackling Data Heterogeneity in Federated Learning via Loss Decomposition
Authors
Issue Date14-Oct-2024
Persistent Identifierhttp://hdl.handle.net/10722/359540

 

DC FieldValueLanguage
dc.contributor.authorZeng, Shuang-
dc.contributor.authorGuo, Pengxin-
dc.contributor.authorWang, Shuai-
dc.contributor.authorWang, Jianbo-
dc.contributor.authorZhou, Yuyin-
dc.contributor.authorQu, Liangqiong-
dc.date.accessioned2025-09-07T00:30:59Z-
dc.date.available2025-09-07T00:30:59Z-
dc.date.issued2024-10-14-
dc.identifier.urihttp://hdl.handle.net/10722/359540-
dc.languageeng-
dc.relation.ispartofInternational Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2024 (06/10/2025-10/10/2025, Morocco)-
dc.titleTackling Data Heterogeneity in Federated Learning via Loss Decomposition-
dc.typeConference_Paper-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats