File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)

Article: FB-GAT: A graph neural networks (GNNs) approach to assessing facades’ buildability

TitleFB-GAT: A graph neural networks (GNNs) approach to assessing facades’ buildability
Authors
Issue Date22-Sep-2025
PublisherElsevier
Citation
Advanced Engineering Informatics, 2025, v. 69 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/362691
ISSN
2023 Impact Factor: 8.0
2023 SCImago Journal Rankings: 1.731

 

DC FieldValueLanguage
dc.contributor.authorWang, Bolun-
dc.contributor.authorLu, Weisheng-
dc.contributor.authorWu, Liupengfei-
dc.contributor.authorGao, Yuchen-
dc.contributor.authorPeng, Ziyu-
dc.contributor.authorCrolla, Kristof-
dc.date.accessioned2025-09-26T00:36:59Z-
dc.date.available2025-09-26T00:36:59Z-
dc.date.issued2025-09-22-
dc.identifier.citationAdvanced Engineering Informatics, 2025, v. 69-
dc.identifier.issn1474-0346-
dc.identifier.urihttp://hdl.handle.net/10722/362691-
dc.languageeng-
dc.publisherElsevier-
dc.relation.ispartofAdvanced Engineering Informatics-
dc.titleFB-GAT: A graph neural networks (GNNs) approach to assessing facades’ buildability-
dc.typeArticle-
dc.identifier.doi10.1016/j.aei.2025.103898-
dc.identifier.volume69-
dc.identifier.eissn1873-5320-
dc.identifier.issnl1474-0346-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats