File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.acha.2012.08.009
- Scopus: eid_2-s2.0-84872314783
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Vakmanʼs problem and the extension of Hilbert transform
| Title | Vakmanʼs problem and the extension of Hilbert transform |
|---|---|
| Authors | |
| Keywords | Almost periodic function Analytic signal method BMO Hilbert transform Instantaneous frequency Vakmans argument |
| Issue Date | 2013 |
| Citation | Applied and Computational Harmonic Analysis, 2013, v. 34, n. 2, p. 308-316 How to Cite? |
| Abstract | To determine the instantaneous amplitude and frequency of a nonstationary signal, it is equivalent to determine the imaginary operator ℑ. Vakman argued that ℑ must be the Hilbert transform if the demodulation is subject to certain fundamental physical conditions. But the proof provided by Vakman lacks rigor. To rigorously prove Vakmans statements, we construct a weighted space Lwp(R) that includes LTp, the p-th integrable periodic function space, and Lp(R), the p-th integrable function space on R. On Lwp(R) an extension of the classical Hilbert transforms H and HËœ |
| Persistent Identifier | http://hdl.handle.net/10722/362935 |
| ISSN | 2023 Impact Factor: 2.6 2023 SCImago Journal Rankings: 2.231 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Huang, Jianfeng | - |
| dc.contributor.author | Wang, Yang | - |
| dc.contributor.author | Yang, Lihua | - |
| dc.date.accessioned | 2025-10-10T07:43:30Z | - |
| dc.date.available | 2025-10-10T07:43:30Z | - |
| dc.date.issued | 2013 | - |
| dc.identifier.citation | Applied and Computational Harmonic Analysis, 2013, v. 34, n. 2, p. 308-316 | - |
| dc.identifier.issn | 1063-5203 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362935 | - |
| dc.description.abstract | To determine the instantaneous amplitude and frequency of a nonstationary signal, it is equivalent to determine the imaginary operator ℑ. Vakman argued that ℑ must be the Hilbert transform if the demodulation is subject to certain fundamental physical conditions. But the proof provided by Vakman lacks rigor. To rigorously prove Vakmans statements, we construct a weighted space Lwp(R) that includes LTp, the p-th integrable periodic function space, and <sup>Lp</sup>(R), the p-th integrable function space on R. On Lwp(R) an extension of the classical Hilbert transforms H and HËœ<inf>T</inf> is defined and a rigorous Vakmans theory is established on this space. © 2012 Elsevier Inc. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Applied and Computational Harmonic Analysis | - |
| dc.subject | Almost periodic function | - |
| dc.subject | Analytic signal method | - |
| dc.subject | BMO | - |
| dc.subject | Hilbert transform | - |
| dc.subject | Instantaneous frequency | - |
| dc.subject | Vakmans argument | - |
| dc.title | Vakmanʼs problem and the extension of Hilbert transform | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1016/j.acha.2012.08.009 | - |
| dc.identifier.scopus | eid_2-s2.0-84872314783 | - |
| dc.identifier.volume | 34 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.spage | 308 | - |
| dc.identifier.epage | 316 | - |
| dc.identifier.eissn | 1096-603X | - |
