File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Vakmanʼs problem and the extension of Hilbert transform

TitleVakmanʼs problem and the extension of Hilbert transform
Authors
KeywordsAlmost periodic function
Analytic signal method
BMO
Hilbert transform
Instantaneous frequency
Vakmans argument
Issue Date2013
Citation
Applied and Computational Harmonic Analysis, 2013, v. 34, n. 2, p. 308-316 How to Cite?
AbstractTo determine the instantaneous amplitude and frequency of a nonstationary signal, it is equivalent to determine the imaginary operator ℑ. Vakman argued that ℑ must be the Hilbert transform if the demodulation is subject to certain fundamental physical conditions. But the proof provided by Vakman lacks rigor. To rigorously prove Vakmans statements, we construct a weighted space Lwp(R) that includes LTp, the p-th integrable periodic function space, and Lp(R), the p-th integrable function space on R. On Lwp(R) an extension of the classical Hilbert transforms H and HËœT is defined and a rigorous Vakmans theory is established on this space. © 2012 Elsevier Inc.
Persistent Identifierhttp://hdl.handle.net/10722/362935
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.231

 

DC FieldValueLanguage
dc.contributor.authorHuang, Jianfeng-
dc.contributor.authorWang, Yang-
dc.contributor.authorYang, Lihua-
dc.date.accessioned2025-10-10T07:43:30Z-
dc.date.available2025-10-10T07:43:30Z-
dc.date.issued2013-
dc.identifier.citationApplied and Computational Harmonic Analysis, 2013, v. 34, n. 2, p. 308-316-
dc.identifier.issn1063-5203-
dc.identifier.urihttp://hdl.handle.net/10722/362935-
dc.description.abstractTo determine the instantaneous amplitude and frequency of a nonstationary signal, it is equivalent to determine the imaginary operator ℑ. Vakman argued that ℑ must be the Hilbert transform if the demodulation is subject to certain fundamental physical conditions. But the proof provided by Vakman lacks rigor. To rigorously prove Vakmans statements, we construct a weighted space Lwp(R) that includes LTp, the p-th integrable periodic function space, and <sup>Lp</sup>(R), the p-th integrable function space on R. On Lwp(R) an extension of the classical Hilbert transforms H and HËœ<inf>T</inf> is defined and a rigorous Vakmans theory is established on this space. © 2012 Elsevier Inc.-
dc.languageeng-
dc.relation.ispartofApplied and Computational Harmonic Analysis-
dc.subjectAlmost periodic function-
dc.subjectAnalytic signal method-
dc.subjectBMO-
dc.subjectHilbert transform-
dc.subjectInstantaneous frequency-
dc.subjectVakmans argument-
dc.titleVakmanʼs problem and the extension of Hilbert transform-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.acha.2012.08.009-
dc.identifier.scopuseid_2-s2.0-84872314783-
dc.identifier.volume34-
dc.identifier.issue2-
dc.identifier.spage308-
dc.identifier.epage316-
dc.identifier.eissn1096-603X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats