File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/bf02647948
- Scopus: eid_2-s2.0-0012946871
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Integral Self-Affine Tiles in ℝn Part II: Lattice Tilings
| Title | Integral Self-Affine Tiles in ℝn Part II: Lattice Tilings |
|---|---|
| Authors | |
| Keywords | Digit set Lattice tiling Quasi-product form Self-affine tile Wavelet |
| Issue Date | 1997 |
| Citation | Journal of Fourier Analysis and Applications, 1997, v. 3, n. 1, p. 83-102 How to Cite? |
| Abstract | Let A be an expanding n × n integer matrix with | det(A)| = m. A standard digit set D for A is any complete set of coset representatives for ℤn/A(ℤn). Associated to a given D is a set T(A, D), which is the attractor of an affine iterated function system, satisfying T = U |
| Persistent Identifier | http://hdl.handle.net/10722/362963 |
| ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 0.889 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lagarias, Jeffrey C. | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:43:45Z | - |
| dc.date.available | 2025-10-10T07:43:45Z | - |
| dc.date.issued | 1997 | - |
| dc.identifier.citation | Journal of Fourier Analysis and Applications, 1997, v. 3, n. 1, p. 83-102 | - |
| dc.identifier.issn | 1069-5869 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362963 | - |
| dc.description.abstract | Let A be an expanding n × n integer matrix with | det(A)| = m. A standard digit set D for A is any complete set of coset representatives for ℤ<sup>n</sup>/A(ℤ<sup>n</sup>). Associated to a given D is a set T(A, D), which is the attractor of an affine iterated function system, satisfying T = U<inf>dεD</inf>(T + d). It is known that T(A, D) tiles ℝ<sup>n</sup> by some subset of ℤ<sup>n</sup>. This paper proves that every standard digit set D gives a set T(A, D) that tiles ℝ<sup>n</sup> with a lattice tiling. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Journal of Fourier Analysis and Applications | - |
| dc.subject | Digit set | - |
| dc.subject | Lattice tiling | - |
| dc.subject | Quasi-product form | - |
| dc.subject | Self-affine tile | - |
| dc.subject | Wavelet | - |
| dc.title | Integral Self-Affine Tiles in ℝn Part II: Lattice Tilings | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1007/bf02647948 | - |
| dc.identifier.scopus | eid_2-s2.0-0012946871 | - |
| dc.identifier.volume | 3 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 83 | - |
| dc.identifier.epage | 102 | - |
