File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Nonnegative radix representations for the orthant R+n

TitleNonnegative radix representations for the orthant R+n
Authors
Issue Date1996
Citation
Transactions of the American Mathematical Society, 1996, v. 348, n. 1, p. 99-117 How to Cite?
AbstractLet A be a nonnegative real matrix which is expanding, i.e. with all eigenvalues |λ| > 1, and suppose that |det(A)| is an integer. Let D consist of exactly |det(A)| nonnegative vectors in Rn. We classify all pairs (A, D) such that every x in the orthant R+n has at least one radix expansion in base A using digits in D. The matrix A must be a diagonal matrix times a permutation matrix. In addition A must be similar to an integer matrix, but need not be an integer matrix. In all cases the digit set D can be diagonally scaled to lie in Zn. The proofs generalize a method of Odlyzko, previously used to classify the one-dimensional case. © 1996 American Mathematical Society.
Persistent Identifierhttp://hdl.handle.net/10722/362964
ISSN
2023 Impact Factor: 1.2
2023 SCImago Journal Rankings: 1.581

 

DC FieldValueLanguage
dc.contributor.authorLagarias, Jeffrey C.-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:43:45Z-
dc.date.available2025-10-10T07:43:45Z-
dc.date.issued1996-
dc.identifier.citationTransactions of the American Mathematical Society, 1996, v. 348, n. 1, p. 99-117-
dc.identifier.issn0002-9947-
dc.identifier.urihttp://hdl.handle.net/10722/362964-
dc.description.abstractLet A be a nonnegative real matrix which is expanding, i.e. with all eigenvalues |λ| > 1, and suppose that |det(A)| is an integer. Let D consist of exactly |det(A)| nonnegative vectors in R<sup>n</sup>. We classify all pairs (A, D) such that every x in the orthant R<inf>+</inf><sup>n</sup> has at least one radix expansion in base A using digits in D. The matrix A must be a diagonal matrix times a permutation matrix. In addition A must be similar to an integer matrix, but need not be an integer matrix. In all cases the digit set D can be diagonally scaled to lie in Z<sup>n</sup>. The proofs generalize a method of Odlyzko, previously used to classify the one-dimensional case. © 1996 American Mathematical Society.-
dc.languageeng-
dc.relation.ispartofTransactions of the American Mathematical Society-
dc.titleNonnegative radix representations for the orthant R+n-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1090/s0002-9947-96-01538-3-
dc.identifier.scopuseid_2-s2.0-0009115112-
dc.identifier.volume348-
dc.identifier.issue1-
dc.identifier.spage99-
dc.identifier.epage117-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats