File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1112/jlms/54.1.161
- Scopus: eid_2-s2.0-0030209206
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets
| Title | Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets |
|---|---|
| Authors | |
| Issue Date | 1996 |
| Citation | Journal of the London Mathematical Society, 1996, v. 54, n. 1, p. 161-179 How to Cite? |
| Abstract | We investigate the measure and tiling properties of integral self-affine tiles, which are sets of positive Lebesgue measure of the form T(A, script D) = {Σ∞ |
| Persistent Identifier | http://hdl.handle.net/10722/362966 |
| ISSN | 2023 Impact Factor: 1.0 2023 SCImago Journal Rankings: 1.383 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lagarias, Jeffrey C. | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:43:45Z | - |
| dc.date.available | 2025-10-10T07:43:45Z | - |
| dc.date.issued | 1996 | - |
| dc.identifier.citation | Journal of the London Mathematical Society, 1996, v. 54, n. 1, p. 161-179 | - |
| dc.identifier.issn | 0024-6107 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362966 | - |
| dc.description.abstract | We investigate the measure and tiling properties of integral self-affine tiles, which are sets of positive Lebesgue measure of the form T(A, script D) = {Σ<sup>∞</sup><inf>j=1</inf> A<sup>-j</sup> d<inf>j</inf>: all d<inf>j</inf> ∈ script D}, where A ∈ M<inf>n</inf>(ℤ) is an expanding matrix with |det(A)| = m, and script D ⊆ ℤ<sup>n</sup> is a set of m integer vectors. The set script D is called a digit set, and is called standard if it is a complete set of residues of ℤ<sup>n</sup>/A(ℤ<sup>n</sup>) or arises from one by an integer affine transformation, and nonstandard otherwise. We prove that all sets T(A, script D) have integer Lebesgue measure, and study when the measure μ(T(A, script D)) ≠ 0. We give a Fourier-analytic condition for μ(T(A, script D)) ≠ 0. We classify nonstandard digit sets in special cases, and give formulae for the measures of their associated tiles. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Journal of the London Mathematical Society | - |
| dc.title | Integral self-affine tiles in ℝn I. Standard and nonstandard digit sets | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1112/jlms/54.1.161 | - |
| dc.identifier.scopus | eid_2-s2.0-0030209206 | - |
| dc.identifier.volume | 54 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 161 | - |
| dc.identifier.epage | 179 | - |
