File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Universal spectra, universal tiling sets and the spectral set conjecture

TitleUniversal spectra, universal tiling sets and the spectral set conjecture
Authors
Issue Date2001
Citation
Mathematica Scandinavica, 2001, v. 88, n. 2, p. 246-256 How to Cite?
AbstractA subset Ω of Rd with finite positive Lebesgue measure is called a spectral set if there exists a subset Λ ⊂ R such that ℰΛ:= {ei2π(λ, x) : λ ∈ Λ} form an orthogonal basis of L2(Ω).The set Λ is called a spectrum of the set Ω. The Spectral Set Conjecture states that Ω is a spectral set if and only if Ω tiles Rd by translation. In this paper we prove the Spectral Set Conjecture for a class of sets Ω ⊂ R. Specifically we show that a spectral set possessing a spectrum that is a strongly periodic set must tile R by translates of a strongly periodic set depending only on the spectrum, and vice versa.
Persistent Identifierhttp://hdl.handle.net/10722/362974
ISSN
2023 Impact Factor: 0.3
2023 SCImago Journal Rankings: 0.201

 

DC FieldValueLanguage
dc.contributor.authorPedersen, Steen-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:43:48Z-
dc.date.available2025-10-10T07:43:48Z-
dc.date.issued2001-
dc.identifier.citationMathematica Scandinavica, 2001, v. 88, n. 2, p. 246-256-
dc.identifier.issn0025-5521-
dc.identifier.urihttp://hdl.handle.net/10722/362974-
dc.description.abstractA subset Ω of R<sup>d</sup> with finite positive Lebesgue measure is called a spectral set if there exists a subset Λ ⊂ R such that ℰ<inf>Λ</inf>:= {ei2π(λ, x) : λ ∈ Λ} form an orthogonal basis of L<sup>2</sup>(Ω).The set Λ is called a spectrum of the set Ω. The Spectral Set Conjecture states that Ω is a spectral set if and only if Ω tiles R<sup>d</sup> by translation. In this paper we prove the Spectral Set Conjecture for a class of sets Ω ⊂ R. Specifically we show that a spectral set possessing a spectrum that is a strongly periodic set must tile R by translates of a strongly periodic set depending only on the spectrum, and vice versa.-
dc.languageeng-
dc.relation.ispartofMathematica Scandinavica-
dc.titleUniversal spectra, universal tiling sets and the spectral set conjecture-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.7146/math.scand.a-14325-
dc.identifier.scopuseid_2-s2.0-0035538497-
dc.identifier.volume88-
dc.identifier.issue2-
dc.identifier.spage246-
dc.identifier.epage256-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats