File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.7146/math.scand.a-14325
- Scopus: eid_2-s2.0-0035538497
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Universal spectra, universal tiling sets and the spectral set conjecture
| Title | Universal spectra, universal tiling sets and the spectral set conjecture |
|---|---|
| Authors | |
| Issue Date | 2001 |
| Citation | Mathematica Scandinavica, 2001, v. 88, n. 2, p. 246-256 How to Cite? |
| Abstract | A subset Ω of Rd with finite positive Lebesgue measure is called a spectral set if there exists a subset Λ ⊂ R such that ℰ |
| Persistent Identifier | http://hdl.handle.net/10722/362974 |
| ISSN | 2023 Impact Factor: 0.3 2023 SCImago Journal Rankings: 0.201 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Pedersen, Steen | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:43:48Z | - |
| dc.date.available | 2025-10-10T07:43:48Z | - |
| dc.date.issued | 2001 | - |
| dc.identifier.citation | Mathematica Scandinavica, 2001, v. 88, n. 2, p. 246-256 | - |
| dc.identifier.issn | 0025-5521 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362974 | - |
| dc.description.abstract | A subset Ω of R<sup>d</sup> with finite positive Lebesgue measure is called a spectral set if there exists a subset Λ ⊂ R such that ℰ<inf>Λ</inf>:= {ei2π(λ, x) : λ ∈ Λ} form an orthogonal basis of L<sup>2</sup>(Ω).The set Λ is called a spectrum of the set Ω. The Spectral Set Conjecture states that Ω is a spectral set if and only if Ω tiles R<sup>d</sup> by translation. In this paper we prove the Spectral Set Conjecture for a class of sets Ω ⊂ R. Specifically we show that a spectral set possessing a spectrum that is a strongly periodic set must tile R by translates of a strongly periodic set depending only on the spectrum, and vice versa. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Mathematica Scandinavica | - |
| dc.title | Universal spectra, universal tiling sets and the spectral set conjecture | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.7146/math.scand.a-14325 | - |
| dc.identifier.scopus | eid_2-s2.0-0035538497 | - |
| dc.identifier.volume | 88 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.spage | 246 | - |
| dc.identifier.epage | 256 | - |
