File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1006/jfan.2001.3941
- Scopus: eid_2-s2.0-0037143985
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: On spectral Cantor measures
| Title | On spectral Cantor measures |
|---|---|
| Authors | |
| Keywords | Cantor measure IFS Ruelle operator Spectral measure |
| Issue Date | 2002 |
| Citation | Journal of Functional Analysis, 2002, v. 193, n. 2, p. 409-420 How to Cite? |
| Abstract | A probability measure in ℝd is called a spectral measure if it has an orthonormal basis consisting of exponentials. In this paper, we study spectral Cantor measures. We establish a large class of such measures, and give a necessary and sufficient condition on the spectrum of a spectral Cantor measure. These results extend the studies by Jorgensen and Pedersen (J. Anal. Math. 75 (1998), 185-228) and Strichartz (J. D'Analyse Math. 81 (2000), 209-238). © 2002 Elsevier Science (USA). |
| Persistent Identifier | http://hdl.handle.net/10722/362983 |
| ISSN | 2023 Impact Factor: 1.7 2023 SCImago Journal Rankings: 2.084 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Łaba, Izabella | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:43:52Z | - |
| dc.date.available | 2025-10-10T07:43:52Z | - |
| dc.date.issued | 2002 | - |
| dc.identifier.citation | Journal of Functional Analysis, 2002, v. 193, n. 2, p. 409-420 | - |
| dc.identifier.issn | 0022-1236 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/362983 | - |
| dc.description.abstract | A probability measure in ℝ<sup>d</sup> is called a spectral measure if it has an orthonormal basis consisting of exponentials. In this paper, we study spectral Cantor measures. We establish a large class of such measures, and give a necessary and sufficient condition on the spectrum of a spectral Cantor measure. These results extend the studies by Jorgensen and Pedersen (J. Anal. Math. 75 (1998), 185-228) and Strichartz (J. D'Analyse Math. 81 (2000), 209-238). © 2002 Elsevier Science (USA). | - |
| dc.language | eng | - |
| dc.relation.ispartof | Journal of Functional Analysis | - |
| dc.subject | Cantor measure | - |
| dc.subject | IFS | - |
| dc.subject | Ruelle operator | - |
| dc.subject | Spectral measure | - |
| dc.title | On spectral Cantor measures | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1006/jfan.2001.3941 | - |
| dc.identifier.scopus | eid_2-s2.0-0037143985 | - |
| dc.identifier.volume | 193 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.spage | 409 | - |
| dc.identifier.epage | 420 | - |
