File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On the number of daubechies scaling functions and a conjecture of Chyzaket al.

TitleOn the number of daubechies scaling functions and a conjecture of Chyzaket al.
Authors
Issue Date2001
Citation
Experimental Mathematics, 2001, v. 10, n. 1, p. 87-89 How to Cite?
AbstractUsing a result on Riesz factorizations, we show that there are at most 2N-1 and at least 2[N/2] distinct Daubechies scalingfunctions with support in [1-N, N]. © A K Peters, Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/362991
ISSN
2023 Impact Factor: 0.7
2023 SCImago Journal Rankings: 0.425

 

DC FieldValueLanguage
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:43:55Z-
dc.date.available2025-10-10T07:43:55Z-
dc.date.issued2001-
dc.identifier.citationExperimental Mathematics, 2001, v. 10, n. 1, p. 87-89-
dc.identifier.issn1058-6458-
dc.identifier.urihttp://hdl.handle.net/10722/362991-
dc.description.abstractUsing a result on Riesz factorizations, we show that there are at most 2<sup>N-1</sup> and at least 2<sup>[N/2]</sup> distinct Daubechies scalingfunctions with support in [1-N, N]. © A K Peters, Ltd.-
dc.languageeng-
dc.relation.ispartofExperimental Mathematics-
dc.titleOn the number of daubechies scaling functions and a conjecture of Chyzaket al.-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1080/10586458.2001.10504430-
dc.identifier.scopuseid_2-s2.0-0039191518-
dc.identifier.volume10-
dc.identifier.issue1-
dc.identifier.spage87-
dc.identifier.epage89-
dc.identifier.eissn1944-950X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats