File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Orthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors

TitleOrthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors
Authors
KeywordsMultiwavelet
Orthogonal refinable function
Orthogonal refinable function vector
Orthogonality criteria
Wavelet
Issue Date2000
Citation
Journal of Knot Theory and Its Ramifications, 2000, v. 6, n. 2, p. 153-170 How to Cite?
AbstractA refinable function φ(x) : ℝn → ℝ or, more generally, a refinable function vector Φ(x) = [φl(x), . . . , φr(x)]T is an L1 solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φj(x - α) : α ∈ ℤn, 1 ≤ j ≤ r} form an orthogonal set of functions in L2(ℝn). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L2(ℝn). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.
Persistent Identifierhttp://hdl.handle.net/10722/362995
ISSN
2023 Impact Factor: 0.3
2023 SCImago Journal Rankings: 0.418

 

DC FieldValueLanguage
dc.contributor.authorLagarias, Jeffrey C.-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:43:56Z-
dc.date.available2025-10-10T07:43:56Z-
dc.date.issued2000-
dc.identifier.citationJournal of Knot Theory and Its Ramifications, 2000, v. 6, n. 2, p. 153-170-
dc.identifier.issn0218-2165-
dc.identifier.urihttp://hdl.handle.net/10722/362995-
dc.description.abstractA refinable function φ(x) : ℝ<sup>n</sup> → ℝ or, more generally, a refinable function vector Φ(x) = [φ<inf>l</inf>(x), . . . , φ<inf>r</inf>(x)]<sup>T</sup> is an L<sup>1</sup> solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if {φ<inf>j</inf>(x - α) : α ∈ ℤ<sup>n</sup>, 1 ≤ j ≤ r} form an orthogonal set of functions in L<sup>2</sup>(ℝ<sup>n</sup>). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multiwavelet bases of L<sup>2</sup>(ℝ<sup>n</sup>). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors.-
dc.languageeng-
dc.relation.ispartofJournal of Knot Theory and Its Ramifications-
dc.subjectMultiwavelet-
dc.subjectOrthogonal refinable function-
dc.subjectOrthogonal refinable function vector-
dc.subjectOrthogonality criteria-
dc.subjectWavelet-
dc.titleOrthogonality Criteria for Compactly Supported Refinable Functions and Refinable Function Vectors-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-0347947652-
dc.identifier.volume6-
dc.identifier.issue2-
dc.identifier.spage153-
dc.identifier.epage170-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats