File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/0024-3795(93)00052-2
- Scopus: eid_2-s2.0-21844487357
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: The finiteness conjecture for the generalized spectral radius of a set of matrices
| Title | The finiteness conjecture for the generalized spectral radius of a set of matrices |
|---|---|
| Authors | |
| Issue Date | 1995 |
| Citation | Linear Algebra and Its Applications, 1995, v. 214, n. C, p. 17-42 How to Cite? |
| Abstract | The generalized spectral radius \ ̄g9(∑) of a set ∑ of n × n matrices is \ ̄g9(∑) = lim sup |
| Persistent Identifier | http://hdl.handle.net/10722/363081 |
| ISSN | 2023 Impact Factor: 1.0 2023 SCImago Journal Rankings: 0.837 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lagarias, Jeffrey C. | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:44:28Z | - |
| dc.date.available | 2025-10-10T07:44:28Z | - |
| dc.date.issued | 1995 | - |
| dc.identifier.citation | Linear Algebra and Its Applications, 1995, v. 214, n. C, p. 17-42 | - |
| dc.identifier.issn | 0024-3795 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363081 | - |
| dc.description.abstract | The generalized spectral radius \ ̄g9(∑) of a set ∑ of n × n matrices is \ ̄g9(∑) = lim sup<inf>k→∞</inf> \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>, where \ ̄g9<inf>k</inf>(∑) = sup{ρ{variant}(A<inf>1</inf>A<inf>2</inf>...A<inf>k</inf>): each A<inf>i</inf> ∈ ∑}. The joint spectral radius \ ̂g9(∑) is \ ̂g9(∑) = lim sup<inf>k→∞</inf> \ ̂g9<inf>k</inf>(∑)<sup> 1 k</sup>, where \ ̂g9<inf>k</inf>(∑) = sup{∥A<inf>1</inf> ... A<inf>k</inf>∥:each A<inf>i</inf> ∈ ∑}. It is known that \ ̂g9(∑) = \ ̄g9(∑) holds for any finite set ∑ of n × n matrices. The finiteness conjecture asserts that for any finite set ∑ of real n × n matrices there exists a finite k such that \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>. The normed finiteness conjecture for a given operator norm asserts that for any finite set ∑ = {A<inf>1</inf>,..., A<inf>m</inf>} having all ∥A<inf>i</inf>∥<inf>op</inf> ≤ 1, either \ ̂g9(∑) < 1 or \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup> = 1 for some finite k. It is shown that the finiteness conjecture is true if and only if the normed finiteness conjecture is true for all operator norms. The normed finiteness conjecture is proved for a large class of operator norms, extending results of Gurvits. In particular, for polytope norms and for the Euclidean norm, explicit upper bounds are given for the least k having \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>. These results imply upper bounds for generalized critical exponents for these norms. © 1995. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Linear Algebra and Its Applications | - |
| dc.title | The finiteness conjecture for the generalized spectral radius of a set of matrices | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1016/0024-3795(93)00052-2 | - |
| dc.identifier.scopus | eid_2-s2.0-21844487357 | - |
| dc.identifier.volume | 214 | - |
| dc.identifier.issue | C | - |
| dc.identifier.spage | 17 | - |
| dc.identifier.epage | 42 | - |
