File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: The finiteness conjecture for the generalized spectral radius of a set of matrices

TitleThe finiteness conjecture for the generalized spectral radius of a set of matrices
Authors
Issue Date1995
Citation
Linear Algebra and Its Applications, 1995, v. 214, n. C, p. 17-42 How to Cite?
AbstractThe generalized spectral radius \ ̄g9(∑) of a set ∑ of n × n matrices is \ ̄g9(∑) = lim supk→∞ \ ̄g9k(∑) 1 k, where \ ̄g9k(∑) = sup{ρ{variant}(A1A2...Ak): each Ai ∈ ∑}. The joint spectral radius \ ̂g9(∑) is \ ̂g9(∑) = lim supk→∞ \ ̂g9k(∑) 1 k, where \ ̂g9k(∑) = sup{∥A1 ... Ak∥:each Ai ∈ ∑}. It is known that \ ̂g9(∑) = \ ̄g9(∑) holds for any finite set ∑ of n × n matrices. The finiteness conjecture asserts that for any finite set ∑ of real n × n matrices there exists a finite k such that \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9k(∑) 1 k. The normed finiteness conjecture for a given operator norm asserts that for any finite set ∑ = {A1,..., Am} having all ∥Aiop ≤ 1, either \ ̂g9(∑) < 1 or \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9k(∑) 1 k = 1 for some finite k. It is shown that the finiteness conjecture is true if and only if the normed finiteness conjecture is true for all operator norms. The normed finiteness conjecture is proved for a large class of operator norms, extending results of Gurvits. In particular, for polytope norms and for the Euclidean norm, explicit upper bounds are given for the least k having \ ̄g9(∑) = \ ̄g9k(∑) 1 k. These results imply upper bounds for generalized critical exponents for these norms. © 1995.
Persistent Identifierhttp://hdl.handle.net/10722/363081
ISSN
2023 Impact Factor: 1.0
2023 SCImago Journal Rankings: 0.837

 

DC FieldValueLanguage
dc.contributor.authorLagarias, Jeffrey C.-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:44:28Z-
dc.date.available2025-10-10T07:44:28Z-
dc.date.issued1995-
dc.identifier.citationLinear Algebra and Its Applications, 1995, v. 214, n. C, p. 17-42-
dc.identifier.issn0024-3795-
dc.identifier.urihttp://hdl.handle.net/10722/363081-
dc.description.abstractThe generalized spectral radius \ ̄g9(∑) of a set ∑ of n × n matrices is \ ̄g9(∑) = lim sup<inf>k→∞</inf> \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>, where \ ̄g9<inf>k</inf>(∑) = sup{ρ{variant}(A<inf>1</inf>A<inf>2</inf>...A<inf>k</inf>): each A<inf>i</inf> ∈ ∑}. The joint spectral radius \ ̂g9(∑) is \ ̂g9(∑) = lim sup<inf>k→∞</inf> \ ̂g9<inf>k</inf>(∑)<sup> 1 k</sup>, where \ ̂g9<inf>k</inf>(∑) = sup{∥A<inf>1</inf> ... A<inf>k</inf>∥:each A<inf>i</inf> ∈ ∑}. It is known that \ ̂g9(∑) = \ ̄g9(∑) holds for any finite set ∑ of n × n matrices. The finiteness conjecture asserts that for any finite set ∑ of real n × n matrices there exists a finite k such that \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>. The normed finiteness conjecture for a given operator norm asserts that for any finite set ∑ = {A<inf>1</inf>,..., A<inf>m</inf>} having all ∥A<inf>i</inf>∥<inf>op</inf> ≤ 1, either \ ̂g9(∑) < 1 or \ ̂g9(∑) = \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup> = 1 for some finite k. It is shown that the finiteness conjecture is true if and only if the normed finiteness conjecture is true for all operator norms. The normed finiteness conjecture is proved for a large class of operator norms, extending results of Gurvits. In particular, for polytope norms and for the Euclidean norm, explicit upper bounds are given for the least k having \ ̄g9(∑) = \ ̄g9<inf>k</inf>(∑)<sup> 1 k</sup>. These results imply upper bounds for generalized critical exponents for these norms. © 1995.-
dc.languageeng-
dc.relation.ispartofLinear Algebra and Its Applications-
dc.titleThe finiteness conjecture for the generalized spectral radius of a set of matrices-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/0024-3795(93)00052-2-
dc.identifier.scopuseid_2-s2.0-21844487357-
dc.identifier.volume214-
dc.identifier.issueC-
dc.identifier.spage17-
dc.identifier.epage42-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats