File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/BF02510658
- Scopus: eid_2-s2.0-23044517675
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Orthogonality criteria for compactly supported refinable functions and refinable function vectors
| Title | Orthogonality criteria for compactly supported refinable functions and refinable function vectors |
|---|---|
| Authors | |
| Keywords | Multiwavelet Orthogonal refinable function Orthogonal refinable function vector Orthogonality criteria Wavelet |
| Issue Date | 2000 |
| Citation | Journal of Fourier Analysis and Applications, 2000, v. 6, n. 2, p. 153-170 How to Cite? |
| Abstract | A refinable function φ(x): ℝn → ℝ or, more generally, a refinable function vector Φ(x) = [φ |
| Persistent Identifier | http://hdl.handle.net/10722/363082 |
| ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 0.889 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lagarias, Jeffrey | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:44:28Z | - |
| dc.date.available | 2025-10-10T07:44:28Z | - |
| dc.date.issued | 2000 | - |
| dc.identifier.citation | Journal of Fourier Analysis and Applications, 2000, v. 6, n. 2, p. 153-170 | - |
| dc.identifier.issn | 1069-5869 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363082 | - |
| dc.description.abstract | A refinable function φ(x): ℝ<sup>n</sup> → ℝ or, more generally, a refinable function vector Φ(x) = [φ<inf>1</inf>(x),…, φ<inf>r</inf>(x)]<sup>T</sup> is an L<sup>1</sup> solution of a system of (vector-valued) refinement equations involving expansion by a dilation matrix A, which is an expanding integer matrix. A refinable function vector is called orthogonal if(φ<inf>j</inf>(x-α): α ε ℤ<sup>n</sup>, 1 ≤ j ≤ r] form an orthogonal set of functions in L<sup>2</sup> (ℝ<sup>n</sup>). Compactly supported orthogonal refinable functions and function vectors can be used to construct orthonormal wavelet and multi-wavelet bases of L<sup>2</sup> (ℝ<sup>n</sup>). In this paper we give a comprehensive set of necessary and sufficient conditions for the orthogonality of compactly supported refinable functions and refinable function vectors. © 2000 Biridiäuser Boston. All rights reserved. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Journal of Fourier Analysis and Applications | - |
| dc.subject | Multiwavelet | - |
| dc.subject | Orthogonal refinable function | - |
| dc.subject | Orthogonal refinable function vector | - |
| dc.subject | Orthogonality criteria | - |
| dc.subject | Wavelet | - |
| dc.title | Orthogonality criteria for compactly supported refinable functions and refinable function vectors | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1007/BF02510658 | - |
| dc.identifier.scopus | eid_2-s2.0-23044517675 | - |
| dc.identifier.volume | 6 | - |
| dc.identifier.issue | 2 | - |
| dc.identifier.spage | 153 | - |
| dc.identifier.epage | 170 | - |
