File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling

TitleRapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling
Authors
Keywordsaccretion timescales
Hf-W model age
metal-silicate differentiation
Issue Date2008
Citation
Earth and Planetary Science Letters, 2008, v. 273, n. 1-2, p. 94-104 How to Cite?
AbstractNew high-precision W isotope measurements are presented for 33 iron meteorites from 8 magmatic groups (IC, IIAB, IID, IIIAB, IIIE, IIIF, I VA and IVB), 2 non-magmatic groups (IAB-IIICD and IIE), and one ungrouped iron (Deep Springs). All magmatic irons have ε182W values that are, within errors, equal to, or less radiogenic than, the Solar System initial of - 3.47 ± 0.20. A method was developed to correct the measured ε182W values of magmatic iron meteorites for the presence of cosmogenic effects produced during space exposure to galactic cosmic rays. The corrected data provide new constraints on the timing of metal-silicate differentiation in iron meteorite parent bodies, which must have taken place within a few million years (< 2 to 6 My) of condensation of calcium-aluminum-rich inclusions (CAIs). Metal-silicate differentiation ages (from 182Hf-182W systematics) were combined with parent body sizes (from metallographic cooling rates) into a model of planetesimal heating by 26Al-decay, to constrain the accretion timescale of iron meteorite parent bodies. Accretion of iron meteorite parent bodies most likely occurred within 1.5 My of the formation of CAIs. The fast accretion times of iron meteorite parent bodies are consistent with dynamical models indicating that these objects may have originated in the terrestrial planet-forming region, where the accretion rates were high. Our W isotopic data for non-magmatic IAB-IIICD and IIE irons provide new constraints for their formation mechanisms. In particular, they support formation of IAB-IIICD iron meteorites by melting during a single collision event dated at 4-7 My after formation of the Solar System. © 2008 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/363108
ISSN
2023 Impact Factor: 4.8
2023 SCImago Journal Rankings: 2.294

 

DC FieldValueLanguage
dc.contributor.authorQin, Liping-
dc.contributor.authorDauphas, Nicolas-
dc.contributor.authorWadhwa, Meenakshi-
dc.contributor.authorMasarik, Jozef-
dc.contributor.authorJanney, Philip E.-
dc.date.accessioned2025-10-10T07:44:37Z-
dc.date.available2025-10-10T07:44:37Z-
dc.date.issued2008-
dc.identifier.citationEarth and Planetary Science Letters, 2008, v. 273, n. 1-2, p. 94-104-
dc.identifier.issn0012-821X-
dc.identifier.urihttp://hdl.handle.net/10722/363108-
dc.description.abstractNew high-precision W isotope measurements are presented for 33 iron meteorites from 8 magmatic groups (IC, IIAB, IID, IIIAB, IIIE, IIIF, I VA and IVB), 2 non-magmatic groups (IAB-IIICD and IIE), and one ungrouped iron (Deep Springs). All magmatic irons have ε<sup>182</sup>W values that are, within errors, equal to, or less radiogenic than, the Solar System initial of - 3.47 ± 0.20. A method was developed to correct the measured ε<sup>182</sup>W values of magmatic iron meteorites for the presence of cosmogenic effects produced during space exposure to galactic cosmic rays. The corrected data provide new constraints on the timing of metal-silicate differentiation in iron meteorite parent bodies, which must have taken place within a few million years (< 2 to 6 My) of condensation of calcium-aluminum-rich inclusions (CAIs). Metal-silicate differentiation ages (from <sup>182</sup>Hf-<sup>182</sup>W systematics) were combined with parent body sizes (from metallographic cooling rates) into a model of planetesimal heating by <sup>26</sup>Al-decay, to constrain the accretion timescale of iron meteorite parent bodies. Accretion of iron meteorite parent bodies most likely occurred within 1.5 My of the formation of CAIs. The fast accretion times of iron meteorite parent bodies are consistent with dynamical models indicating that these objects may have originated in the terrestrial planet-forming region, where the accretion rates were high. Our W isotopic data for non-magmatic IAB-IIICD and IIE irons provide new constraints for their formation mechanisms. In particular, they support formation of IAB-IIICD iron meteorites by melting during a single collision event dated at 4-7 My after formation of the Solar System. © 2008 Elsevier B.V. All rights reserved.-
dc.languageeng-
dc.relation.ispartofEarth and Planetary Science Letters-
dc.subjectaccretion timescales-
dc.subjectHf-W model age-
dc.subjectmetal-silicate differentiation-
dc.titleRapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf-182W chronometry and thermal modeling-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.epsl.2008.06.018-
dc.identifier.scopuseid_2-s2.0-49149084170-
dc.identifier.volume273-
dc.identifier.issue1-2-
dc.identifier.spage94-
dc.identifier.epage104-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats