File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Phase retrieval for sparse signals

TitlePhase retrieval for sparse signals
Authors
KeywordsCompressed sensing
Null space property
Phase retrieval
Signal recovery
Issue Date2014
Citation
Applied and Computational Harmonic Analysis, 2014, v. 37, n. 3, p. 531-544 How to Cite?
AbstractThe aim of this paper is to build up the theoretical framework for the recovery of sparse signals from the magnitude of the measurements. We first investigate the minimal number of measurements for the success of the recovery of sparse signals from the magnitude of samples. We completely settle the minimality question for the real case and give a bound for the complex case. We then study the recovery performance of the ℓ1 minimization for the sparse phase retrieval problem. In particular, we present the null space property which, to our knowledge, is the first sufficient and necessary condition for the success of ℓ1 minimization for k-sparse phase retrieval.
Persistent Identifierhttp://hdl.handle.net/10722/363195
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.231

 

DC FieldValueLanguage
dc.contributor.authorWang, Yang-
dc.contributor.authorXu, Zhiqiang-
dc.date.accessioned2025-10-10T07:45:08Z-
dc.date.available2025-10-10T07:45:08Z-
dc.date.issued2014-
dc.identifier.citationApplied and Computational Harmonic Analysis, 2014, v. 37, n. 3, p. 531-544-
dc.identifier.issn1063-5203-
dc.identifier.urihttp://hdl.handle.net/10722/363195-
dc.description.abstractThe aim of this paper is to build up the theoretical framework for the recovery of sparse signals from the magnitude of the measurements. We first investigate the minimal number of measurements for the success of the recovery of sparse signals from the magnitude of samples. We completely settle the minimality question for the real case and give a bound for the complex case. We then study the recovery performance of the ℓ<inf>1</inf> minimization for the sparse phase retrieval problem. In particular, we present the null space property which, to our knowledge, is the first sufficient and necessary condition for the success of ℓ<inf>1</inf> minimization for k-sparse phase retrieval.-
dc.languageeng-
dc.relation.ispartofApplied and Computational Harmonic Analysis-
dc.subjectCompressed sensing-
dc.subjectNull space property-
dc.subjectPhase retrieval-
dc.subjectSignal recovery-
dc.titlePhase retrieval for sparse signals-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.acha.2014.04.001-
dc.identifier.scopuseid_2-s2.0-84908508853-
dc.identifier.volume37-
dc.identifier.issue3-
dc.identifier.spage531-
dc.identifier.epage544-
dc.identifier.eissn1096-603X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats