File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Compactly Supported Orthogonal Symmetric Scaling Functions

TitleCompactly Supported Orthogonal Symmetric Scaling Functions
Authors
KeywordsWavelets; orthogonal scaling function; symmetric scaling function
Issue Date1999
Citation
Applied and Computational Harmonic Analysis, 1999, v. 7, n. 2, p. 137-150 How to Cite?
AbstractDaubechies (1988, Comm. Pure Appl. Math.41, 909-996) showed that, except for the Haar function, there exist no compactly supported orthogonal symmetric scaling functions for the dilation q = 2. Nevertheless, such scaling functions do exist for dilations q>2 (as evidenced by Chui and Lian's construction (1995, Appl. Comput. Harmon. Anal.2, 68-84) for q = 3); these functions are the main object of this paper. We construct new symmetric scaling functions and introduce the "Batman" family of continuous symmetric scaling functions with very small supports. We establish the exact smoothness of the "Batman" scaling functions using the joint spectral radius technique. © 1999 Academic Press.
Persistent Identifierhttp://hdl.handle.net/10722/363704
ISSN
2023 Impact Factor: 2.6
2023 SCImago Journal Rankings: 2.231

 

DC FieldValueLanguage
dc.contributor.authorBelogay, Eugene-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:48:42Z-
dc.date.available2025-10-10T07:48:42Z-
dc.date.issued1999-
dc.identifier.citationApplied and Computational Harmonic Analysis, 1999, v. 7, n. 2, p. 137-150-
dc.identifier.issn1063-5203-
dc.identifier.urihttp://hdl.handle.net/10722/363704-
dc.description.abstractDaubechies (1988, Comm. Pure Appl. Math.41, 909-996) showed that, except for the Haar function, there exist no compactly supported orthogonal symmetric scaling functions for the dilation q = 2. Nevertheless, such scaling functions do exist for dilations q>2 (as evidenced by Chui and Lian's construction (1995, Appl. Comput. Harmon. Anal.2, 68-84) for q = 3); these functions are the main object of this paper. We construct new symmetric scaling functions and introduce the "Batman" family of continuous symmetric scaling functions with very small supports. We establish the exact smoothness of the "Batman" scaling functions using the joint spectral radius technique. © 1999 Academic Press.-
dc.languageeng-
dc.relation.ispartofApplied and Computational Harmonic Analysis-
dc.subjectWavelets; orthogonal scaling function; symmetric scaling function-
dc.titleCompactly Supported Orthogonal Symmetric Scaling Functions-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1006/acha.1999.0265-
dc.identifier.scopuseid_2-s2.0-0000371616-
dc.identifier.volume7-
dc.identifier.issue2-
dc.identifier.spage137-
dc.identifier.epage150-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats