File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1006/jfan.1996.3008
- Scopus: eid_2-s2.0-0031115862
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: Spectral sets and factorizations of finite abelian groups
| Title | Spectral sets and factorizations of finite abelian groups |
|---|---|
| Authors | |
| Issue Date | 1997 |
| Citation | Journal of Functional Analysis, 1997, v. 145, n. 1, p. 73-98 How to Cite? |
| Abstract | Aspectral setis a subsetΩofRnwith Lebesgue measure 0<μ(Ω)<∞ such that there exists a setΛof exponential functions which form an orthogonal basis ofL2(Ω). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set if and only ifΩtilesRnby translation. We study setsΩwhich tileRnusing a rational periodic tile set S=Zn+A, where A⊆(1/N |
| Persistent Identifier | http://hdl.handle.net/10722/363706 |
| ISSN | 2023 Impact Factor: 1.7 2023 SCImago Journal Rankings: 2.084 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Lagarias, Jeffrey C. | - |
| dc.contributor.author | Wang, Yang | - |
| dc.date.accessioned | 2025-10-10T07:48:43Z | - |
| dc.date.available | 2025-10-10T07:48:43Z | - |
| dc.date.issued | 1997 | - |
| dc.identifier.citation | Journal of Functional Analysis, 1997, v. 145, n. 1, p. 73-98 | - |
| dc.identifier.issn | 0022-1236 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/363706 | - |
| dc.description.abstract | Aspectral setis a subsetΩofR<sup>n</sup>with Lebesgue measure 0<μ(Ω)<∞ such that there exists a setΛof exponential functions which form an orthogonal basis ofL<sup>2</sup>(Ω). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set if and only ifΩtilesR<sup>n</sup>by translation. We study setsΩwhich tileR<sup>n</sup>using a rational periodic tile set S=Z<sup>n</sup>+A, where A⊆(1/N<inf>1</inf>)Z×...×(1/N<inf>n</inf>)Zis finite. We characterize geometrically bounded measurable setsΩthat tileR<sup>n</sup>with such a tile set. Certain tile sets S have the property that every bounded measurable setΩwhich tilesR<sup>n</sup>with S is a spectral set, with a fixed spectrumΛ<inf>S</inf>. We callΛ<inf>S</inf>a universal spectrum for such S. We give a necessary and sufficient condition for a rational periodic setΛto be a universal spectrum for S, which is expressed in terms of factorizationsA⊕B=GwhereG=Z<inf>N1</inf>×...×Z<inf> Nn</inf>, andA:=A (modZ<sup>n</sup>). In dimensionn=1 we show that S has a universal spectrum wheneverN<inf>1</inf>is the order of a "good" group in the sense of Hajós, and for various other sets S. © 1997 Academic Press. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Journal of Functional Analysis | - |
| dc.title | Spectral sets and factorizations of finite abelian groups | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1006/jfan.1996.3008 | - |
| dc.identifier.scopus | eid_2-s2.0-0031115862 | - |
| dc.identifier.volume | 145 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | 73 | - |
| dc.identifier.epage | 98 | - |
