File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Spectral sets and factorizations of finite abelian groups

TitleSpectral sets and factorizations of finite abelian groups
Authors
Issue Date1997
Citation
Journal of Functional Analysis, 1997, v. 145, n. 1, p. 73-98 How to Cite?
AbstractAspectral setis a subsetΩofRnwith Lebesgue measure 0<μ(Ω)<∞ such that there exists a setΛof exponential functions which form an orthogonal basis ofL2(Ω). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set if and only ifΩtilesRnby translation. We study setsΩwhich tileRnusing a rational periodic tile set S=Zn+A, where A⊆(1/N1)Z×...×(1/Nn)Zis finite. We characterize geometrically bounded measurable setsΩthat tileRnwith such a tile set. Certain tile sets S have the property that every bounded measurable setΩwhich tilesRnwith S is a spectral set, with a fixed spectrumΛS. We callΛSa universal spectrum for such S. We give a necessary and sufficient condition for a rational periodic setΛto be a universal spectrum for S, which is expressed in terms of factorizationsA⊕B=GwhereG=ZN1×...×Z Nn, andA:=A (modZn). In dimensionn=1 we show that S has a universal spectrum wheneverN1is the order of a "good" group in the sense of Hajós, and for various other sets S. © 1997 Academic Press.
Persistent Identifierhttp://hdl.handle.net/10722/363706
ISSN
2023 Impact Factor: 1.7
2023 SCImago Journal Rankings: 2.084

 

DC FieldValueLanguage
dc.contributor.authorLagarias, Jeffrey C.-
dc.contributor.authorWang, Yang-
dc.date.accessioned2025-10-10T07:48:43Z-
dc.date.available2025-10-10T07:48:43Z-
dc.date.issued1997-
dc.identifier.citationJournal of Functional Analysis, 1997, v. 145, n. 1, p. 73-98-
dc.identifier.issn0022-1236-
dc.identifier.urihttp://hdl.handle.net/10722/363706-
dc.description.abstractAspectral setis a subsetΩofR<sup>n</sup>with Lebesgue measure 0<μ(Ω)<∞ such that there exists a setΛof exponential functions which form an orthogonal basis ofL<sup>2</sup>(Ω). The spectral set conjecture of B. Fuglede states that a set 0 is a spectral set if and only ifΩtilesR<sup>n</sup>by translation. We study setsΩwhich tileR<sup>n</sup>using a rational periodic tile set S=Z<sup>n</sup>+A, where A⊆(1/N<inf>1</inf>)Z×...×(1/N<inf>n</inf>)Zis finite. We characterize geometrically bounded measurable setsΩthat tileR<sup>n</sup>with such a tile set. Certain tile sets S have the property that every bounded measurable setΩwhich tilesR<sup>n</sup>with S is a spectral set, with a fixed spectrumΛ<inf>S</inf>. We callΛ<inf>S</inf>a universal spectrum for such S. We give a necessary and sufficient condition for a rational periodic setΛto be a universal spectrum for S, which is expressed in terms of factorizationsA⊕B=GwhereG=Z<inf>N1</inf>×...×Z<inf> Nn</inf>, andA:=A (modZ<sup>n</sup>). In dimensionn=1 we show that S has a universal spectrum wheneverN<inf>1</inf>is the order of a "good" group in the sense of Hajós, and for various other sets S. © 1997 Academic Press.-
dc.languageeng-
dc.relation.ispartofJournal of Functional Analysis-
dc.titleSpectral sets and factorizations of finite abelian groups-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1006/jfan.1996.3008-
dc.identifier.scopuseid_2-s2.0-0031115862-
dc.identifier.volume145-
dc.identifier.issue1-
dc.identifier.spage73-
dc.identifier.epage98-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats