File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Scalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree

TitleScalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree
Authors
Keywordsggtree
phylogenetic placement
placement uncertainty
treeio
visualization
Issue Date12-Jan-2025
PublisherWiley Open Access
Citation
iMeta, 2025, v. 4, n. 1 How to Cite?
AbstractIn metabarcoding research, such as taxon identification, phylogenetic placement plays a critical role. However, many existing phylogenetic placement methods lack comprehensive features for downstream analysis and visualization. Visualization tools often ignore placement uncertainty, making it difficult to explore and interpret placement data effectively. To overcome these limitations, we introduce a scalable approach using treeio and ggtree for parsing and visualizing phylogenetic placement data. The treeio-ggtree method supports placement filtration, uncertainty exploration, and customized visualization. It enhances scalability for large analyses by enabling users to extract subtrees from the full reference tree, focusing on specific samples within a clade. Additionally, this approach provides a clearer representation of phylogenetic placement uncertainty by visualizing associated placement information on the final placement tree.
Persistent Identifierhttp://hdl.handle.net/10722/364178
ISSN
2023 Impact Factor: 23.7
2023 SCImago Journal Rankings: 3.269

 

DC FieldValueLanguage
dc.contributor.authorChen, Meijun-
dc.contributor.authorLuo, Xiao-
dc.contributor.authorXu, Shuangbin-
dc.contributor.authorLi, Lin-
dc.contributor.authorLi, Junrui-
dc.contributor.authorXie, Zijing-
dc.contributor.authorWang, Qianwen-
dc.contributor.authorLiao, Yufan-
dc.contributor.authorLiu, Bingdong-
dc.contributor.authorLiang, Wenquan-
dc.contributor.authorMo, Ke-
dc.contributor.authorSong, Qiong-
dc.contributor.authorChen, Xia-
dc.contributor.authorLam, Tommy Tsan Yuk-
dc.contributor.authorYu, Guangchuang-
dc.date.accessioned2025-10-25T00:35:19Z-
dc.date.available2025-10-25T00:35:19Z-
dc.date.issued2025-01-12-
dc.identifier.citationiMeta, 2025, v. 4, n. 1-
dc.identifier.issn2770-5986-
dc.identifier.urihttp://hdl.handle.net/10722/364178-
dc.description.abstractIn metabarcoding research, such as taxon identification, phylogenetic placement plays a critical role. However, many existing phylogenetic placement methods lack comprehensive features for downstream analysis and visualization. Visualization tools often ignore placement uncertainty, making it difficult to explore and interpret placement data effectively. To overcome these limitations, we introduce a scalable approach using treeio and ggtree for parsing and visualizing phylogenetic placement data. The treeio-ggtree method supports placement filtration, uncertainty exploration, and customized visualization. It enhances scalability for large analyses by enabling users to extract subtrees from the full reference tree, focusing on specific samples within a clade. Additionally, this approach provides a clearer representation of phylogenetic placement uncertainty by visualizing associated placement information on the final placement tree.-
dc.languageeng-
dc.publisherWiley Open Access-
dc.relation.ispartofiMeta-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectggtree-
dc.subjectphylogenetic placement-
dc.subjectplacement uncertainty-
dc.subjecttreeio-
dc.subjectvisualization-
dc.titleScalable method for exploring phylogenetic placement uncertainty with custom visualizations using treeio and ggtree -
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1002/imt2.269-
dc.identifier.scopuseid_2-s2.0-85214935994-
dc.identifier.volume4-
dc.identifier.issue1-
dc.identifier.eissn2770-596X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats