File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Harnessing landrace diversity empowers wheat breeding

TitleHarnessing landrace diversity empowers wheat breeding
Authors
Issue Date2024
Citation
Nature, 2024, v. 632, n. 8026, p. 823-831 How to Cite?
AbstractHarnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security1. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection2 of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker–trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.
Persistent Identifierhttp://hdl.handle.net/10722/365532
ISSN
2023 Impact Factor: 50.5
2023 SCImago Journal Rankings: 18.509

 

DC FieldValueLanguage
dc.contributor.authorCheng, Shifeng-
dc.contributor.authorFeng, Cong-
dc.contributor.authorWingen, Luzie U.-
dc.contributor.authorCheng, Hong-
dc.contributor.authorRiche, Andrew B.-
dc.contributor.authorJiang, Mei-
dc.contributor.authorLeverington-Waite, Michelle-
dc.contributor.authorHuang, Zejian-
dc.contributor.authorCollier, Sarah-
dc.contributor.authorOrford, Simon-
dc.contributor.authorWang, Xiaoming-
dc.contributor.authorAwal, Rajani-
dc.contributor.authorBarker, Gary-
dc.contributor.authorO’Hara, Tom-
dc.contributor.authorLister, Clare-
dc.contributor.authorSiluveru, Ajay-
dc.contributor.authorQuiroz-Chávez, Jesús-
dc.contributor.authorRamírez-González, Ricardo H.-
dc.contributor.authorBryant, Ruth-
dc.contributor.authorBerry, Simon-
dc.contributor.authorBansal, Urmil-
dc.contributor.authorBariana, Harbans S.-
dc.contributor.authorBennett, Malcolm J.-
dc.contributor.authorBicego, Breno-
dc.contributor.authorBilham, Lorelei-
dc.contributor.authorBrown, James K.M.-
dc.contributor.authorBurridge, Amanda-
dc.contributor.authorBurt, Chris-
dc.contributor.authorBuurman, Milika-
dc.contributor.authorCastle, March-
dc.contributor.authorChartrain, Laetitia-
dc.contributor.authorChen, Baizhi-
dc.contributor.authorDenbel, Worku-
dc.contributor.authorElkot, Ahmed F.-
dc.contributor.authorFenwick, Paul-
dc.contributor.authorFeuerhelm, David-
dc.contributor.authorFoulkes, John-
dc.contributor.authorGaju, Oorbessy-
dc.contributor.authorGauley, Adam-
dc.contributor.authorGaurav, Kumar-
dc.contributor.authorHafeez, Amber N.-
dc.contributor.authorHan, Ruirui-
dc.contributor.authorHorler, Richard-
dc.contributor.authorHou, Junliang-
dc.contributor.authorIqbal, Muhammad S.-
dc.contributor.authorKerton, Matthew-
dc.contributor.authorKondic-Spica, Ankica-
dc.contributor.authorKowalski, Ania-
dc.contributor.authorLage, Jacob-
dc.contributor.authorLi, Xiaolong-
dc.contributor.authorLiu, Hongbing-
dc.contributor.authorLiu, Shiyan-
dc.contributor.authorLovegrove, Alison-
dc.contributor.authorMa, Lingling-
dc.contributor.authorMumford, Cathy-
dc.contributor.authorParmar, Saroj-
dc.contributor.authorPhilp, Charlie-
dc.contributor.authorPlayford, Darryl-
dc.contributor.authorPrzewieslik-Allen, Alexandra M.-
dc.contributor.authorSarfraz, Zareen-
dc.contributor.authorSchafer, David-
dc.contributor.authorShewry, Peter R.-
dc.contributor.authorShi, Yan-
dc.contributor.authorSlafer, Gustavo A.-
dc.contributor.authorSong, Baoxing-
dc.contributor.authorSong, Bo-
dc.contributor.authorSteele, David-
dc.contributor.authorSteuernagel, Burkhard-
dc.contributor.authorTailby, Phillip-
dc.contributor.authorTyrrell, Simon-
dc.contributor.authorWaheed, Abdul-
dc.contributor.authorWamalwa, Mercy N.-
dc.contributor.authorWang, Xingwei-
dc.contributor.authorWei, Yanping-
dc.contributor.authorWinfield, Mark-
dc.contributor.authorWu, Shishi-
dc.contributor.authorWu, Yubing-
dc.contributor.authorWulff, Brande B.H.-
dc.contributor.authorXian, Wenfei-
dc.contributor.authorXu, Yawen-
dc.contributor.authorXu, Yunfeng-
dc.contributor.authorYuan, Quan-
dc.contributor.authorZhang, Xin-
dc.contributor.authorEdwards, Keith J.-
dc.contributor.authorDixon, Laura-
dc.contributor.authorNicholson, Paul-
dc.contributor.authorChayut, Noam-
dc.contributor.authorHawkesford, Malcolm J.-
dc.contributor.authorUauy, Cristobal-
dc.contributor.authorSanders, Dale-
dc.contributor.authorHuang, Sanwen-
dc.contributor.authorGriffiths, Simon-
dc.date.accessioned2025-11-05T09:41:18Z-
dc.date.available2025-11-05T09:41:18Z-
dc.date.issued2024-
dc.identifier.citationNature, 2024, v. 632, n. 8026, p. 823-831-
dc.identifier.issn0028-0836-
dc.identifier.urihttp://hdl.handle.net/10722/365532-
dc.description.abstractHarnessing genetic diversity in major staple crops through the development of new breeding capabilities is essential to ensure food security<sup>1</sup>. Here we examined the genetic and phenotypic diversity of the A. E. Watkins landrace collection<sup>2</sup> of bread wheat (Triticum aestivum), a major global cereal, by whole-genome re-sequencing of 827 Watkins landraces and 208 modern cultivars and in-depth field evaluation spanning a decade. We found that modern cultivars are derived from two of the seven ancestral groups of wheat and maintain very long-range haplotype integrity. The remaining five groups represent untapped genetic sources, providing access to landrace-specific alleles and haplotypes for breeding. Linkage disequilibrium-based haplotypes and association genetics analyses link Watkins genomes to the thousands of identified high-resolution quantitative trait loci and significant marker–trait associations. Using these structured germplasm, genotyping and informatics resources, we revealed many Watkins-unique beneficial haplotypes that can confer superior traits in modern wheat. Furthermore, we assessed the phenotypic effects of 44,338 Watkins-unique haplotypes, introgressed from 143 prioritized quantitative trait loci in the context of modern cultivars, bridging the gap between landrace diversity and current breeding. This study establishes a framework for systematically utilizing genetic diversity in crop improvement to achieve sustainable food security.-
dc.languageeng-
dc.relation.ispartofNature-
dc.titleHarnessing landrace diversity empowers wheat breeding-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/s41586-024-07682-9-
dc.identifier.pmid38885696-
dc.identifier.scopuseid_2-s2.0-85200166912-
dc.identifier.volume632-
dc.identifier.issue8026-
dc.identifier.spage823-
dc.identifier.epage831-
dc.identifier.eissn1476-4687-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats