File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Mobility Data Science: Perspectives and Challenges

TitleMobility Data Science: Perspectives and Challenges
Authors
KeywordsEnvironmental impacts
Geospatial intelligence
GPS data
Mobility Patterns
Spatiotemporal data
Urban Mobility
Issue Date1-Jul-2024
PublisherAssociation for Computing Machinery (ACM)
Citation
ACM Transactions on Spatial Algorithms and Systems, 2024, v. 10, n. 2 How to Cite?
Abstract

Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)-equipped mobile devices and other inexpensive location-Tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-The-Art, and describe open challenges for the research community in the coming years.


Persistent Identifierhttp://hdl.handle.net/10722/366285
ISSN
2023 Impact Factor: 1.2
2023 SCImago Journal Rankings: 0.620

 

DC FieldValueLanguage
dc.contributor.authorMokbel, Mohamed-
dc.contributor.authorSakr, Mahmoud-
dc.contributor.authorXiong, Li-
dc.contributor.authorZüfle, Andreas-
dc.contributor.authorAlmeida, Jussara-
dc.contributor.authorAnderson, Taylor-
dc.contributor.authorAref, Walid-
dc.contributor.authorAndrienko, Gennady-
dc.contributor.authorAndrienko, Natalia-
dc.contributor.authorCao, Yang-
dc.contributor.authorChawla, Sanjay-
dc.contributor.authorCheng, Reynold-
dc.contributor.authorChrysanthis, Panos-
dc.contributor.authorFei, Xiqi-
dc.contributor.authorGhinita, Gabriel-
dc.contributor.authorGraser, Anita-
dc.contributor.authorGunopulos, Dimitrios-
dc.contributor.authorJensen, Christian S.-
dc.contributor.authorKim, Joon Seok-
dc.contributor.authorKim, Kyoung Sook-
dc.contributor.authorKröger, Peer-
dc.contributor.authorKrumm, John-
dc.contributor.authorLauer, Johannes-
dc.contributor.authorMagdy, Amr-
dc.contributor.authorNascimento, Mario-
dc.contributor.authorRavada, Siva-
dc.contributor.authorRenz, Matthias-
dc.contributor.authorSacharidis, Dimitris-
dc.contributor.authorSalim, Flora-
dc.contributor.authorSarwat, Mohamed-
dc.contributor.authorSchoemans, Maxime-
dc.contributor.authorShahabi, Cyrus-
dc.contributor.authorSpeckmann, Bettina-
dc.contributor.authorTanin, Egemen-
dc.contributor.authorTeng, Xu-
dc.contributor.authorTheodoridis, Yannis-
dc.contributor.authorTorp, Kristian-
dc.contributor.authorTrajcevski, Goce-
dc.contributor.authorVan Kreveld, Marc-
dc.contributor.authorWenk, Carola-
dc.contributor.authorWerner, Martin-
dc.contributor.authorWong, Raymond-
dc.contributor.authorWu, Song-
dc.contributor.authorXu, Jianqiu-
dc.contributor.authorYoussef, Moustafa-
dc.contributor.authorZeinalipour, Demetris-
dc.contributor.authorZhang, Mengxuan-
dc.contributor.authorZimányi, Esteban-
dc.date.accessioned2025-11-25T04:18:33Z-
dc.date.available2025-11-25T04:18:33Z-
dc.date.issued2024-07-01-
dc.identifier.citationACM Transactions on Spatial Algorithms and Systems, 2024, v. 10, n. 2-
dc.identifier.issn2374-0353-
dc.identifier.urihttp://hdl.handle.net/10722/366285-
dc.description.abstract<p>Mobility data captures the locations of moving objects such as humans, animals, and cars. With the availability of Global Positioning System (GPS)-equipped mobile devices and other inexpensive location-Tracking technologies, mobility data is collected ubiquitously. In recent years, the use of mobility data has demonstrated a significant impact in various domains, including traffic management, urban planning, and health sciences. In this article, we present the domain of mobility data science. Towards a unified approach to mobility data science, we present a pipeline having the following components: mobility data collection, cleaning, analysis, management, and privacy. For each of these components, we explain how mobility data science differs from general data science, we survey the current state-of-The-Art, and describe open challenges for the research community in the coming years.</p>-
dc.languageeng-
dc.publisherAssociation for Computing Machinery (ACM)-
dc.relation.ispartofACM Transactions on Spatial Algorithms and Systems-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectEnvironmental impacts-
dc.subjectGeospatial intelligence-
dc.subjectGPS data-
dc.subjectMobility Patterns-
dc.subjectSpatiotemporal data-
dc.subjectUrban Mobility-
dc.titleMobility Data Science: Perspectives and Challenges-
dc.typeArticle-
dc.identifier.doi10.1145/3652158-
dc.identifier.scopuseid_2-s2.0-85196966582-
dc.identifier.volume10-
dc.identifier.issue2-
dc.identifier.eissn2374-0361-
dc.identifier.issnl2374-0353-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats