File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Universal tail profile of Gaussian multiplicative chaos

TitleUniversal tail profile of Gaussian multiplicative chaos
Authors
KeywordsGaussian multiplicative chaos
Log-correlated Gaussian fields
Issue Date2020
Citation
Probability Theory and Related Fields, 2020, v. 177, n. 3-4, p. 711-746 How to Cite?
AbstractIn this article we study the tail probability of the mass of Gaussian multiplicative chaos. With the novel use of a Tauberian argument and Goldie’s implicit renewal theorem, we provide a unified approach to general log-correlated Gaussian fields in arbitrary dimension and derive precise first order asymptotics of the tail probability, resolving a conjecture of Rhodes and Vargas. The leading order is described by a universal constant that captures the generic property of Gaussian multiplicative chaos, and may be seen as the analogue of the Liouville unit volume reflection coefficients in higher dimensions.
Persistent Identifierhttp://hdl.handle.net/10722/367617
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 2.326

 

DC FieldValueLanguage
dc.contributor.authorWong, Mo Dick-
dc.date.accessioned2025-12-19T07:58:07Z-
dc.date.available2025-12-19T07:58:07Z-
dc.date.issued2020-
dc.identifier.citationProbability Theory and Related Fields, 2020, v. 177, n. 3-4, p. 711-746-
dc.identifier.issn0178-8051-
dc.identifier.urihttp://hdl.handle.net/10722/367617-
dc.description.abstractIn this article we study the tail probability of the mass of Gaussian multiplicative chaos. With the novel use of a Tauberian argument and Goldie’s implicit renewal theorem, we provide a unified approach to general log-correlated Gaussian fields in arbitrary dimension and derive precise first order asymptotics of the tail probability, resolving a conjecture of Rhodes and Vargas. The leading order is described by a universal constant that captures the generic property of Gaussian multiplicative chaos, and may be seen as the analogue of the Liouville unit volume reflection coefficients in higher dimensions.-
dc.languageeng-
dc.relation.ispartofProbability Theory and Related Fields-
dc.subjectGaussian multiplicative chaos-
dc.subjectLog-correlated Gaussian fields-
dc.titleUniversal tail profile of Gaussian multiplicative chaos-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1007/s00440-020-00960-3-
dc.identifier.scopuseid_2-s2.0-85079123764-
dc.identifier.volume177-
dc.identifier.issue3-4-
dc.identifier.spage711-
dc.identifier.epage746-
dc.identifier.eissn1432-2064-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats