File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A short proof of Helson's conjecture

TitleA short proof of Helson's conjecture
Authors
Issue Date2025
Citation
Bulletin of the London Mathematical Society, 2025, v. 57, n. 4, p. 1065-1076 How to Cite?
AbstractLet (Formula presented.) be the Steinhaus multiplicative function: a completely multiplicative function such that (Formula presented.) are i.i.d. random variables uniformly distributed on the complex unit circle (Formula presented.). Helson conjectured that (Formula presented.) as (Formula presented.), and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.
Persistent Identifierhttp://hdl.handle.net/10722/367625
ISSN
2023 Impact Factor: 0.8
2023 SCImago Journal Rankings: 1.043

 

DC FieldValueLanguage
dc.contributor.authorGorodetsky, Ofir-
dc.contributor.authorWong, Mo Dick-
dc.date.accessioned2025-12-19T07:58:10Z-
dc.date.available2025-12-19T07:58:10Z-
dc.date.issued2025-
dc.identifier.citationBulletin of the London Mathematical Society, 2025, v. 57, n. 4, p. 1065-1076-
dc.identifier.issn0024-6093-
dc.identifier.urihttp://hdl.handle.net/10722/367625-
dc.description.abstractLet (Formula presented.) be the Steinhaus multiplicative function: a completely multiplicative function such that (Formula presented.) are i.i.d. random variables uniformly distributed on the complex unit circle (Formula presented.). Helson conjectured that (Formula presented.) as (Formula presented.), and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.-
dc.languageeng-
dc.relation.ispartofBulletin of the London Mathematical Society-
dc.titleA short proof of Helson's conjecture-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1112/blms.70015-
dc.identifier.scopuseid_2-s2.0-105002561238-
dc.identifier.volume57-
dc.identifier.issue4-
dc.identifier.spage1065-
dc.identifier.epage1076-
dc.identifier.eissn1469-2120-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats