File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.5802/crmath.650
- Scopus: eid_2-s2.0-85211478854
- Find via

Supplementary
-
Citations:
- Scopus: 0
- Appears in Collections:
Article: On Erdős sums of almost primes
| Title | On Erdős sums of almost primes |
|---|---|
| Authors | |
| Keywords | Almost primes Dickman distribution primitive set recursive distributional equation |
| Issue Date | 2024 |
| Citation | Comptes Rendus Mathematique, 2024, v. 362, p. 1571-1596 How to Cite? |
| Abstract | In 1935, Erdős proved that the sums f |
| Persistent Identifier | http://hdl.handle.net/10722/368122 |
| ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.669 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Gorodetsky, Ofir | - |
| dc.contributor.author | Lichtman, Jared Duker | - |
| dc.contributor.author | Wong, Mo Dick | - |
| dc.date.accessioned | 2025-12-19T08:02:03Z | - |
| dc.date.available | 2025-12-19T08:02:03Z | - |
| dc.date.issued | 2024 | - |
| dc.identifier.citation | Comptes Rendus Mathematique, 2024, v. 362, p. 1571-1596 | - |
| dc.identifier.issn | 1631-073X | - |
| dc.identifier.uri | http://hdl.handle.net/10722/368122 | - |
| dc.description.abstract | In 1935, Erdős proved that the sums f<inf>k</inf> = <sup>P</sup><inf>n</inf> 1/(n log n), over integers n with exactly k prime factors, are bounded by an absolute constant, and in 1993 Zhang proved that f<inf>k</inf> is maximized by the prime sum f<inf>1</inf> = <sup>P</sup><inf>p</inf> 1/(p log p). According to a 2013 conjecture of Banks and Martin, the sums f<inf>k</inf> are predicted to decrease monotonically in k. In this article, we show that the sums restricted to odd integers are indeed monotonically decreasing in k, sufficiently large. By contrast, contrary to the conjecture we prove that the sums f<inf>k</inf> increase monotonically in k, sufficiently large. Our main result gives an asymptotic for f<inf>k</inf> which identifies the (negative) secondary term, namely f<inf>k</inf> =1−(a+o(1))k<sup>2</sup>/2<sup>k</sup> for an explicit constant a =0.0656···. This is proven by a refined method combining real and complex analysis, whereas the classical results of Sathe and Selberg on products of k primes imply the weaker estimate f<inf>k</inf> =1+Oε(k<sup>ε−</sup><sup>1/2</sup>). We also give an alternate, probability-theoretic argument related to the Dickman distribution. Here the proof reduces to showing a sequence of integrals converges exponentially quickly e<sup>−γ</sup>, which may be of independent interest. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Comptes Rendus Mathematique | - |
| dc.subject | Almost primes | - |
| dc.subject | Dickman distribution | - |
| dc.subject | primitive set | - |
| dc.subject | recursive distributional equation | - |
| dc.title | On Erdős sums of almost primes | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.5802/crmath.650 | - |
| dc.identifier.scopus | eid_2-s2.0-85211478854 | - |
| dc.identifier.volume | 362 | - |
| dc.identifier.spage | 1571 | - |
| dc.identifier.epage | 1596 | - |
| dc.identifier.eissn | 1778-3569 | - |
