File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Conformal invariance of double random currents I: Identification of the limit

TitleConformal invariance of double random currents I: Identification of the limit
Authors
Issue Date2025
Citation
Proceedings of the London Mathematical Society, 2025, v. 130, n. 1, article no. e70022 How to Cite?
AbstractThis is the first of two papers devoted to the proof of conformal invariance of the critical double random current model on the square lattice. More precisely, we show the convergence of loop ensembles obtained by taking the cluster boundaries in the sum of two independent currents with free and wired boundary conditions. The strategy is first to prove convergence of the associated height function to the continuum Gaussian free field, and then to characterise the scaling limit of the loop ensembles as certain local sets of this Gaussian free field. In this paper, we identify uniquely the possible subsequential limits of the loop ensembles. Combined with Duminil-Copin et al., this completes the proof of conformal invariance.
Persistent Identifierhttp://hdl.handle.net/10722/368123
ISSN
2023 Impact Factor: 1.5
2023 SCImago Journal Rankings: 2.532

 

DC FieldValueLanguage
dc.contributor.authorDuminil-Copin, Hugo-
dc.contributor.authorLis, Marcin-
dc.contributor.authorQian, Wei-
dc.date.accessioned2025-12-19T08:02:04Z-
dc.date.available2025-12-19T08:02:04Z-
dc.date.issued2025-
dc.identifier.citationProceedings of the London Mathematical Society, 2025, v. 130, n. 1, article no. e70022-
dc.identifier.issn0024-6115-
dc.identifier.urihttp://hdl.handle.net/10722/368123-
dc.description.abstractThis is the first of two papers devoted to the proof of conformal invariance of the critical double random current model on the square lattice. More precisely, we show the convergence of loop ensembles obtained by taking the cluster boundaries in the sum of two independent currents with free and wired boundary conditions. The strategy is first to prove convergence of the associated height function to the continuum Gaussian free field, and then to characterise the scaling limit of the loop ensembles as certain local sets of this Gaussian free field. In this paper, we identify uniquely the possible subsequential limits of the loop ensembles. Combined with Duminil-Copin et al., this completes the proof of conformal invariance.-
dc.languageeng-
dc.relation.ispartofProceedings of the London Mathematical Society-
dc.titleConformal invariance of double random currents I: Identification of the limit-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1112/plms.70022-
dc.identifier.scopuseid_2-s2.0-85214260768-
dc.identifier.volume130-
dc.identifier.issue1-
dc.identifier.spagearticle no. e70022-
dc.identifier.epagearticle no. e70022-
dc.identifier.eissn1460-244X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats