File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/acs.est.1c05672
- Scopus: eid_2-s2.0-85131857508
- PMID: 35617100
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification
| Title | Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification |
|---|---|
| Authors | |
| Keywords | forward osmosis free nitrous acid mainstream partial nitrification salinity wastewater primary treatment |
| Issue Date | 2022 |
| Citation | Environmental Science and Technology, 2022, v. 56, n. 12, p. 8663-8672 How to Cite? |
| Abstract | Achieving stable long-term mainstream nitrite oxidizing bacteria (NOB) suppression is the bottleneck for the novel partial nitrification (PN) process toward energy- and carbon-efficient wastewater treatment. However, long-term PN stability remains a challenge due to NOB adaptation. This study proposed and demonstrated a novel strategy for achieving NOB suppression by the primary treatment of mainstream wastewater with a forward osmosis (FO) membrane process, which facilitated two external NOB inhibition factors (salinity and free nitrous acid, FNA). To evaluate the proposed strategy, a lab-scale sequencing batch reactor was operated for 200 days. A stable PN operation was achieved with a nitrite accumulation ratio of 97.7 ± 2.8%. NOB were suppressed under the combined inhibition effect of NaCl (7.9 ± 0.2 g/L, as introduced by the FO direct filtration) and FNA (0.11 ± 0.02 mg of HNO |
| Persistent Identifier | http://hdl.handle.net/10722/368696 |
| ISSN | 2023 Impact Factor: 10.8 2023 SCImago Journal Rankings: 3.516 |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Zhao, Yingfen | - |
| dc.contributor.author | Ab Hamid, Nur Hafizah | - |
| dc.contributor.author | Reddy, Nichelle | - |
| dc.contributor.author | Zheng, Min | - |
| dc.contributor.author | Yuan, Zhiguo | - |
| dc.contributor.author | Duan, Haoran | - |
| dc.contributor.author | Ye, Liu | - |
| dc.date.accessioned | 2026-01-16T02:37:38Z | - |
| dc.date.available | 2026-01-16T02:37:38Z | - |
| dc.date.issued | 2022 | - |
| dc.identifier.citation | Environmental Science and Technology, 2022, v. 56, n. 12, p. 8663-8672 | - |
| dc.identifier.issn | 0013-936X | - |
| dc.identifier.uri | http://hdl.handle.net/10722/368696 | - |
| dc.description.abstract | Achieving stable long-term mainstream nitrite oxidizing bacteria (NOB) suppression is the bottleneck for the novel partial nitrification (PN) process toward energy- and carbon-efficient wastewater treatment. However, long-term PN stability remains a challenge due to NOB adaptation. This study proposed and demonstrated a novel strategy for achieving NOB suppression by the primary treatment of mainstream wastewater with a forward osmosis (FO) membrane process, which facilitated two external NOB inhibition factors (salinity and free nitrous acid, FNA). To evaluate the proposed strategy, a lab-scale sequencing batch reactor was operated for 200 days. A stable PN operation was achieved with a nitrite accumulation ratio of 97.7 ± 2.8%. NOB were suppressed under the combined inhibition effect of NaCl (7.9 ± 0.2 g/L, as introduced by the FO direct filtration) and FNA (0.11 ± 0.02 mg of HNO<inf>2</inf>-N/L, formed as a result of the increased NH<inf>4</inf><sup>+</sup>-N concentration after the FO process). The two inhibition factors worked in synergy to achieve a more stable PN operation. The microbial analysis showed that the elevated salinity and accumulation of FNA reshaped the microbial community and selectively eliminated NOB. Finally, an economic and feasibility analysis was conducted, which suggests that the integration of an FO unit into PN/A is a feasible and economically viable wastewater treatment process. | - |
| dc.language | eng | - |
| dc.relation.ispartof | Environmental Science and Technology | - |
| dc.subject | forward osmosis | - |
| dc.subject | free nitrous acid | - |
| dc.subject | mainstream partial nitrification | - |
| dc.subject | salinity | - |
| dc.subject | wastewater primary treatment | - |
| dc.title | Wastewater Primary Treatment Using Forward Osmosis Introduces Inhibition to Achieve Stable Mainstream Partial Nitrification | - |
| dc.type | Article | - |
| dc.description.nature | link_to_subscribed_fulltext | - |
| dc.identifier.doi | 10.1021/acs.est.1c05672 | - |
| dc.identifier.pmid | 35617100 | - |
| dc.identifier.scopus | eid_2-s2.0-85131857508 | - |
| dc.identifier.volume | 56 | - |
| dc.identifier.issue | 12 | - |
| dc.identifier.spage | 8663 | - |
| dc.identifier.epage | 8672 | - |
| dc.identifier.eissn | 1520-5851 | - |
