File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes

TitleCleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes
Authors
Keywordsoil cleaning
oil spill remediation
oil-water separation
polymer brush
self-cleaning
thin film
zwitterionic surface
Issue Date2015
Citation
ACS Nano, 2015, v. 9, n. 9, p. 9188-9198 How to Cite?
AbstractHerein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly restricts their application in practice.
Persistent Identifierhttp://hdl.handle.net/10722/368911
ISSN
2023 Impact Factor: 15.8
2023 SCImago Journal Rankings: 4.593

 

DC FieldValueLanguage
dc.contributor.authorHe, Ke-
dc.contributor.authorDuan, Haoran-
dc.contributor.authorChen, George Y.-
dc.contributor.authorLiu, Xiaokong-
dc.contributor.authorYang, Wensheng-
dc.contributor.authorWang, Dayang-
dc.date.accessioned2026-01-16T02:39:44Z-
dc.date.available2026-01-16T02:39:44Z-
dc.date.issued2015-
dc.identifier.citationACS Nano, 2015, v. 9, n. 9, p. 9188-9198-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/10722/368911-
dc.description.abstractHerein we report a self-cleaning coating derived from zwitterionic poly(2-methacryloyloxylethyl phosphorylcholine) (PMPC) brushes grafted on a solid substrate. The PMPC surface not only exhibits complete oil repellency in a water-wetted state (i.e., underwater superoleophobicity), but also allows effective cleaning of oil fouled on dry surfaces by water alone. The PMPC surface was compared with typical underwater superoleophobic surfaces realized with the aid of surface roughening by applying hydrophilic nanostructures and those realized by applying smooth hydrophilic polyelectrolyte multilayers. We show that underwater superoleophobicity of a surface is not sufficient to enable water to clean up oil fouling on a dry surface, because the latter circumstance demands the surface to be able to strongly bond water not only in its pristine state but also in an oil-wetted state. The PMPC surface is unique with its described self-cleaning performance because the zwitterionic phosphorylcholine groups exhibit exceptional binding affinity to water even when they are already wetted by oil. Further, we show that applying this PMPC coating onto steel meshes produces oil-water separation membranes that are resilient to oil contamination with simply water rinsing. Consequently, we provide an effective solution to the oil contamination issue on the oil-water separation membranes, which is an imperative challenge in this field. Thanks to the self-cleaning effect of the PMPC surface, PMPC-coated steel meshes can not only separate oil from oil-water mixtures in a water-wetted state, but also can lift oil out from oil-water mixtures even in a dry state, which is a very promising technology for practical oil-spill remediation. In contrast, we show that oil contamination on conventional hydrophilic oil-water separation membranes would permanently induce the loss of oil-water separation function, and thus they have to be always used in a completely water-wetted state, which significantly restricts their application in practice.-
dc.languageeng-
dc.relation.ispartofACS Nano-
dc.subjectoil cleaning-
dc.subjectoil spill remediation-
dc.subjectoil-water separation-
dc.subjectpolymer brush-
dc.subjectself-cleaning-
dc.subjectthin film-
dc.subjectzwitterionic surface-
dc.titleCleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil-Water Separation Membranes-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1021/acsnano.5b03791-
dc.identifier.scopuseid_2-s2.0-84942279651-
dc.identifier.volume9-
dc.identifier.issue9-
dc.identifier.spage9188-
dc.identifier.epage9198-
dc.identifier.eissn1936-086X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats