File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.patcog.2003.11.003
- Scopus: eid_2-s2.0-1842762839
- WOS: WOS:000220677200007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: An optimization algorithm for clustering using weighted dissimilarity measures
Title | An optimization algorithm for clustering using weighted dissimilarity measures |
---|---|
Authors | |
Keywords | Attributes weights Clustering Data mining Optimization |
Issue Date | 2004 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr |
Citation | Pattern Recognition, 2004, v. 37 n. 5, p. 943-952 How to Cite? |
Abstract | One of the main problems in cluster analysis is the weighting of attributes so as to discover structures that may be present. By using weighted dissimilarity measures for objects, a new approach is developed, which allows the use of the k-means-type paradigm to efficiently cluster large data sets. The optimization algorithm is presented and the effectiveness of the algorithm is demonstrated with both synthetic and real data sets. © 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/75220 |
ISSN | 2023 Impact Factor: 7.5 2023 SCImago Journal Rankings: 2.732 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, EY | en_HK |
dc.contributor.author | Ching, WK | en_HK |
dc.contributor.author | Ng, MK | en_HK |
dc.contributor.author | Huang, JZ | en_HK |
dc.date.accessioned | 2010-09-06T07:09:05Z | - |
dc.date.available | 2010-09-06T07:09:05Z | - |
dc.date.issued | 2004 | en_HK |
dc.identifier.citation | Pattern Recognition, 2004, v. 37 n. 5, p. 943-952 | en_HK |
dc.identifier.issn | 0031-3203 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75220 | - |
dc.description.abstract | One of the main problems in cluster analysis is the weighting of attributes so as to discover structures that may be present. By using weighted dissimilarity measures for objects, a new approach is developed, which allows the use of the k-means-type paradigm to efficiently cluster large data sets. The optimization algorithm is presented and the effectiveness of the algorithm is demonstrated with both synthetic and real data sets. © 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr | en_HK |
dc.relation.ispartof | Pattern Recognition | en_HK |
dc.subject | Attributes weights | en_HK |
dc.subject | Clustering | en_HK |
dc.subject | Data mining | en_HK |
dc.subject | Optimization | en_HK |
dc.title | An optimization algorithm for clustering using weighted dissimilarity measures | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0031-3203&volume=37&spage=943&epage=952&date=2004&atitle=An+Optimization+Algorithm+for+Clustering+Using+Weighted+Dissimilarity+Measures | en_HK |
dc.identifier.email | Ching, WK:wching@hku.hk | en_HK |
dc.identifier.authority | Ching, WK=rp00679 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.patcog.2003.11.003 | en_HK |
dc.identifier.scopus | eid_2-s2.0-1842762839 | en_HK |
dc.identifier.hkuros | 88731 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-1842762839&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 37 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 943 | en_HK |
dc.identifier.epage | 952 | en_HK |
dc.identifier.isi | WOS:000220677200007 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Chan, EY=16038954500 | en_HK |
dc.identifier.scopusauthorid | Ching, WK=13310265500 | en_HK |
dc.identifier.scopusauthorid | Ng, MK=7202076432 | en_HK |
dc.identifier.scopusauthorid | Huang, JZ=36107803800 | en_HK |
dc.identifier.issnl | 0031-3203 | - |