File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.ansens.2005.11.004
- Scopus: eid_2-s2.0-33744829752
- WOS: WOS:000238681800005
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On the variety of Lagrangian subalgebras, II
Title | On the variety of Lagrangian subalgebras, II |
---|---|
Authors | |
Issue Date | 2006 |
Publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/ansens |
Citation | Annales Scientifiques De L'ecole Normale Superieure, 2006, v. 39 n. 2, p. 347-379 How to Cite? |
Abstract | Motivated by Drinfeld's theorem on Poisson homogeneous spaces, we study the variety L of Lagrangian subalgebras of g ⊕ g for a complex semi-simple Lie algebra g. Let G be the adjoint group of g. We show that the (G × G)-orbit closures in L are smooth spherical varieties. We also classify the irreducible components of L and show that they are smooth. Using some methods of M. Yakimov, we give a new description and proof of Karolinsky's classification of the diagonal G-orbits in L, which, as a special case, recovers the Belavin-Drinfeld classification of quasi-triangular r-matrices on g. Furthermore, L has a canonical Poisson structure, and we compute its rank at each point and describe its symplectic leaf decomposition in terms of intersections of orbits of two subgroups of G × G. © 2006 Elsevier SAS. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/75255 |
ISSN | 2023 Impact Factor: 1.3 2023 SCImago Journal Rankings: 2.419 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Evens, S | en_HK |
dc.contributor.author | Lu, JH | en_HK |
dc.date.accessioned | 2010-09-06T07:09:24Z | - |
dc.date.available | 2010-09-06T07:09:24Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Annales Scientifiques De L'ecole Normale Superieure, 2006, v. 39 n. 2, p. 347-379 | en_HK |
dc.identifier.issn | 0012-9593 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75255 | - |
dc.description.abstract | Motivated by Drinfeld's theorem on Poisson homogeneous spaces, we study the variety L of Lagrangian subalgebras of g ⊕ g for a complex semi-simple Lie algebra g. Let G be the adjoint group of g. We show that the (G × G)-orbit closures in L are smooth spherical varieties. We also classify the irreducible components of L and show that they are smooth. Using some methods of M. Yakimov, we give a new description and proof of Karolinsky's classification of the diagonal G-orbits in L, which, as a special case, recovers the Belavin-Drinfeld classification of quasi-triangular r-matrices on g. Furthermore, L has a canonical Poisson structure, and we compute its rank at each point and describe its symplectic leaf decomposition in terms of intersections of orbits of two subgroups of G × G. © 2006 Elsevier SAS. All rights reserved. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Elsevier France, Editions Scientifiques et Medicales. The Journal's web site is located at http://www.elsevier.com/locate/ansens | en_HK |
dc.relation.ispartof | Annales Scientifiques de l'Ecole Normale Superieure | en_HK |
dc.title | On the variety of Lagrangian subalgebras, II | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Lu, JH:jhluhku@hku.hk | en_HK |
dc.identifier.authority | Lu, JH=rp00753 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.ansens.2005.11.004 | en_HK |
dc.identifier.scopus | eid_2-s2.0-33744829752 | en_HK |
dc.identifier.hkuros | 116226 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33744829752&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 39 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 347 | en_HK |
dc.identifier.epage | 379 | en_HK |
dc.identifier.eissn | 1873-2151 | - |
dc.identifier.isi | WOS:000238681800005 | - |
dc.publisher.place | France | en_HK |
dc.identifier.scopusauthorid | Evens, S=6601953518 | en_HK |
dc.identifier.scopusauthorid | Lu, JH=35790078400 | en_HK |
dc.identifier.issnl | 0012-9593 | - |