File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.patcog.2006.06.018
- Scopus: eid_2-s2.0-33947104960
- WOS: WOS:000245745000010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A semi-supervised regression model for mixed numerical and categorical variables
Title | A semi-supervised regression model for mixed numerical and categorical variables |
---|---|
Authors | |
Keywords | Categorical variables Clustering Data mining Numerical variables Regression |
Issue Date | 2007 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr |
Citation | Pattern Recognition, 2007, v. 40 n. 6, p. 1745-1752 How to Cite? |
Abstract | In this paper, we develop a semi-supervised regression algorithm to analyze data sets which contain both categorical and numerical attributes. This algorithm partitions the data sets into several clusters and at the same time fits a multivariate regression model to each cluster. This framework allows one to incorporate both multivariate regression models for numerical variables (supervised learning methods) and k-mode clustering algorithms for categorical variables (unsupervised learning methods). The estimates of regression models and k-mode parameters can be obtained simultaneously by minimizing a function which is the weighted sum of the least-square errors in the multivariate regression models and the dissimilarity measures among the categorical variables. Both synthetic and real data sets are presented to demonstrate the effectiveness of the proposed method. © 2006 Pattern Recognition Society. |
Persistent Identifier | http://hdl.handle.net/10722/75264 |
ISSN | 2023 Impact Factor: 7.5 2023 SCImago Journal Rankings: 2.732 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ng, MK | en_HK |
dc.contributor.author | Chan, EY | en_HK |
dc.contributor.author | So, MMC | en_HK |
dc.contributor.author | Ching, WK | en_HK |
dc.date.accessioned | 2010-09-06T07:09:29Z | - |
dc.date.available | 2010-09-06T07:09:29Z | - |
dc.date.issued | 2007 | en_HK |
dc.identifier.citation | Pattern Recognition, 2007, v. 40 n. 6, p. 1745-1752 | en_HK |
dc.identifier.issn | 0031-3203 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75264 | - |
dc.description.abstract | In this paper, we develop a semi-supervised regression algorithm to analyze data sets which contain both categorical and numerical attributes. This algorithm partitions the data sets into several clusters and at the same time fits a multivariate regression model to each cluster. This framework allows one to incorporate both multivariate regression models for numerical variables (supervised learning methods) and k-mode clustering algorithms for categorical variables (unsupervised learning methods). The estimates of regression models and k-mode parameters can be obtained simultaneously by minimizing a function which is the weighted sum of the least-square errors in the multivariate regression models and the dissimilarity measures among the categorical variables. Both synthetic and real data sets are presented to demonstrate the effectiveness of the proposed method. © 2006 Pattern Recognition Society. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/pr | en_HK |
dc.relation.ispartof | Pattern Recognition | en_HK |
dc.subject | Categorical variables | en_HK |
dc.subject | Clustering | en_HK |
dc.subject | Data mining | en_HK |
dc.subject | Numerical variables | en_HK |
dc.subject | Regression | en_HK |
dc.title | A semi-supervised regression model for mixed numerical and categorical variables | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0031-3203&volume=40&spage=1745&epage=1752&date=2007&atitle=A+Semi-Supervised+Regression+Model+for+Mixed+Numerical+and+Categorical+Variables | en_HK |
dc.identifier.email | Ching, WK:wching@hku.hk | en_HK |
dc.identifier.authority | Ching, WK=rp00679 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.patcog.2006.06.018 | en_HK |
dc.identifier.scopus | eid_2-s2.0-33947104960 | en_HK |
dc.identifier.hkuros | 126429 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33947104960&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 40 | en_HK |
dc.identifier.issue | 6 | en_HK |
dc.identifier.spage | 1745 | en_HK |
dc.identifier.epage | 1752 | en_HK |
dc.identifier.isi | WOS:000245745000010 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Ng, MK=34571761900 | en_HK |
dc.identifier.scopusauthorid | Chan, EY=16038954500 | en_HK |
dc.identifier.scopusauthorid | So, MMC=16040240300 | en_HK |
dc.identifier.scopusauthorid | Ching, WK=13310265500 | en_HK |
dc.identifier.issnl | 0031-3203 | - |