File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Approximate and dynamic rank aggregation

TitleApproximate and dynamic rank aggregation
Authors
KeywordsCoherence
Kendall-τ distance
Rank aggregation
Weighted ECC
Issue Date2004
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/tcs
Citation
9th International Computing and Combinatorics Conference, Big Sky, MT, 25-28 July 2003. In Theoretical Computer Science, 2004, v. 325 n. 3, p. 409-424 How to Cite?
AbstractRank aggregation, originally an important issue in social choice theory, has become more and more important in information retrieval applications over the Internet, such as meta-search, recommendation system, etc. In this work, we consider an aggregation function using a weighted version of the normalized Kendall-τ distance. We propose a polynomial time approximation scheme, as well as a practical heuristic algorithm with the approximation ratio two for the NP-hard problem. In addition, we discuss issues and models for the dynamic rank aggregation problem. © 2004 Elsevier B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/89065
ISSN
2023 Impact Factor: 0.9
2023 SCImago Journal Rankings: 0.570
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChin, FYLen_HK
dc.contributor.authorDeng, Xen_HK
dc.contributor.authorFang, Qen_HK
dc.contributor.authorZhu, Sen_HK
dc.date.accessioned2010-09-06T09:51:57Z-
dc.date.available2010-09-06T09:51:57Z-
dc.date.issued2004en_HK
dc.identifier.citation9th International Computing and Combinatorics Conference, Big Sky, MT, 25-28 July 2003. In Theoretical Computer Science, 2004, v. 325 n. 3, p. 409-424en_HK
dc.identifier.issn0304-3975en_HK
dc.identifier.urihttp://hdl.handle.net/10722/89065-
dc.description.abstractRank aggregation, originally an important issue in social choice theory, has become more and more important in information retrieval applications over the Internet, such as meta-search, recommendation system, etc. In this work, we consider an aggregation function using a weighted version of the normalized Kendall-τ distance. We propose a polynomial time approximation scheme, as well as a practical heuristic algorithm with the approximation ratio two for the NP-hard problem. In addition, we discuss issues and models for the dynamic rank aggregation problem. © 2004 Elsevier B.V. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/tcsen_HK
dc.relation.ispartofTheoretical Computer Scienceen_HK
dc.rightsTheoretical Computer Science. Copyright © Elsevier BV.en_HK
dc.subjectCoherenceen_HK
dc.subjectKendall-τ distanceen_HK
dc.subjectRank aggregationen_HK
dc.subjectWeighted ECCen_HK
dc.titleApproximate and dynamic rank aggregationen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0304-3975&volume=325&issue=3&spage=409&epage=424&date=2004&atitle=Approximate+and+dynamic+rank+aggregationen_HK
dc.identifier.emailChin, FYL:chin@cs.hku.hken_HK
dc.identifier.authorityChin, FYL=rp00105en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.tcs.2004.02.043en_HK
dc.identifier.scopuseid_2-s2.0-4544285225en_HK
dc.identifier.hkuros98360en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-4544285225&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume325en_HK
dc.identifier.issue3en_HK
dc.identifier.spage409en_HK
dc.identifier.epage424en_HK
dc.identifier.isiWOS:000224235000006-
dc.publisher.placeNetherlandsen_HK
dc.description.other9th International Computing and Combinatorics Conference, Big Sky, MT, 25-28 July 2003. In Theoretical Computer Science, 2004, v. 325 n. 3, p. 409-424-
dc.identifier.scopusauthoridChin, FYL=7005101915en_HK
dc.identifier.scopusauthoridDeng, X=7401768881en_HK
dc.identifier.scopusauthoridFang, Q=7202644300en_HK
dc.identifier.scopusauthoridZhu, S=8940145500en_HK
dc.identifier.citeulike1166935-
dc.identifier.issnl0304-3975-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats