File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: General metabolism of Laribacter hongkongensis: a genome-wide analysis

TitleGeneral metabolism of Laribacter hongkongensis: a genome-wide analysis
Authors
KeywordsBacteria (microorganisms)
Chromobacterium violaceum
Laribacter hongkongensis
Neisseria gonorrhoeae
Neisseria meningitidis
Issue Date2011
PublisherBioMed Central Ltd. The Journal's web site is located at http://www.cellandbioscience.com
Citation
Cell & Bioscience, 2011, v. 1, article no. 16 How to Cite?
AbstractBACKGROUND: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of L. hongkongensis and correlated them with its phenotypic characteristics. RESULTS: The L. hongkongensis genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and beta-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in Neisseria gonorrhoeae, Neisseria meningitidis and Chromobacterium violaceum. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter. CONCLUSIONS: The L. hongkongensis genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.
Persistent Identifierhttp://hdl.handle.net/10722/135265
ISSN
2021 Impact Factor: 9.584
2020 SCImago Journal Rankings: 1.831
PubMed Central ID
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorCurreem, SOen_HK
dc.contributor.authorTeng, JLen_HK
dc.contributor.authorTse, Hen_HK
dc.contributor.authorYuen, KYen_HK
dc.contributor.authorLau, SKen_HK
dc.contributor.authorWoo, PCen_HK
dc.date.accessioned2011-07-27T01:30:53Z-
dc.date.available2011-07-27T01:30:53Z-
dc.date.issued2011en_HK
dc.identifier.citationCell & Bioscience, 2011, v. 1, article no. 16en_HK
dc.identifier.issn2045-3701en_HK
dc.identifier.urihttp://hdl.handle.net/10722/135265-
dc.description.abstractBACKGROUND: Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes and pathways of the general metabolism of L. hongkongensis and correlated them with its phenotypic characteristics. RESULTS: The L. hongkongensis genome possesses the pentose phosphate and gluconeogenesis pathways and tricarboxylic acid and glyoxylate cycles, but incomplete Embden-Meyerhof-Parnas and Entner-Doudoroff pathways, in agreement with its asaccharolytic phenotype. It contains enzymes for biosynthesis and beta-oxidation of saturated fatty acids, biosynthesis of all 20 universal amino acids and selenocysteine, the latter not observed in Neisseria gonorrhoeae, Neisseria meningitidis and Chromobacterium violaceum. The genome contains a variety of dehydrogenases, enabling it to utilize different substrates as electron donors. It encodes three terminal cytochrome oxidases for respiration using oxygen as the electron acceptor under aerobic and microaerophilic conditions and four reductases for respiration with alternative electron acceptors under anaerobic conditions. The presence of complete tetrathionate reductase operon may confer survival advantage in mammalian host in association with diarrhea. The genome contains CDSs for incorporating sulfur and nitrogen by sulfate assimilation, ammonia assimilation and nitrate reduction. The existence of both glutamate dehydrogenase and glutamine synthetase/glutamate synthase pathways suggests an importance of ammonia metabolism in the living environments that it may encounter. CONCLUSIONS: The L. hongkongensis genome possesses a variety of genes and pathways for carbohydrate, amino acid and lipid metabolism, respiratory chain and sulfur and nitrogen metabolism. These allow the bacterium to utilize various substrates for energy production and survive in different environmental niches.en_HK
dc.languageengen_US
dc.publisherBioMed Central Ltd. The Journal's web site is located at http://www.cellandbioscience.comen_HK
dc.relation.ispartofCell & Bioscienceen_HK
dc.rightsCell & Bioscience. Copyright © BioMed Central Ltd.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectBacteria (microorganisms)-
dc.subjectChromobacterium violaceum-
dc.subjectLaribacter hongkongensis-
dc.subjectNeisseria gonorrhoeae-
dc.subjectNeisseria meningitidis-
dc.titleGeneral metabolism of Laribacter hongkongensis: a genome-wide analysisen_HK
dc.typeArticleen_HK
dc.identifier.emailCurreem, SO: shirly@hkucc.hku.hken_HK
dc.identifier.emailTeng, JL: llteng@hkucc.hku.hken_HK
dc.identifier.emailTse, H: herman@graduate.hku.hken_HK
dc.identifier.emailYuen, KY: kyyuen@hkucc.hku.hken_HK
dc.identifier.emailLau, SK: skplau@hkucc.hku.hken_HK
dc.identifier.emailWoo, PC: pcywoo@hkucc.hku.hk-
dc.identifier.authorityTeng, JL=rp00277en_HK
dc.identifier.authorityTse, H=rp00519en_HK
dc.identifier.authorityYuen, KY=rp00366en_HK
dc.identifier.authorityLau, SK=rp00486en_HK
dc.identifier.authorityWoo, PC=rp00430en_HK
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1186/2045-3701-1-16en_HK
dc.identifier.pmid21711917-
dc.identifier.pmcidPMC3125206-
dc.identifier.scopuseid_2-s2.0-80052904109en_HK
dc.identifier.hkuros187244en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-80052904109&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume1, article no. 16en_HK
dc.identifier.isiWOS:000307054600001-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridWoo, PC=7201801340en_HK
dc.identifier.scopusauthoridLau, SK=7401596211en_HK
dc.identifier.scopusauthoridYuen, KY=36078079100en_HK
dc.identifier.scopusauthoridTse, H=7006070596en_HK
dc.identifier.scopusauthoridTeng, JL=7202560229en_HK
dc.identifier.scopusauthoridCurreem, SO=16416762100en_HK
dc.identifier.citeulike10715316-
dc.identifier.issnl2045-3701-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats