File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Short circuit current improvement in planar heterojunction organic solar cells by multijunction charge transfer

TitleShort circuit current improvement in planar heterojunction organic solar cells by multijunction charge transfer
Authors
KeywordsBi-layer
Charge transfer process
Efficiency enhancement
Exciton dissociation
Heterojunction devices
Issue Date2012
PublisherAmerican Institute of Physics. The Journal's web site is located at http://apl.aip.org/
Citation
Applied Physics Letters, 2012, v. 100 n. 5, article no. 053301 How to Cite?
AbstractA multijunction structure was applied on an organic photovoltaic (OPV) device for broadening the absorption spectrum and enhancing the power conversion efficiency through charge transfer process. By inserting the tris[4-(2-thienyl)]amine (TTPA) into a boron subphthalocyanine chloride (SubPc)/C 60 OPV device, the short circuit current density (J sc) showed a 47.5% increases from 3.05 to 4.50 mA/cm 2 in the bilayer planar heterojunction device, while the open circuit voltage (V oc) remained constant. Based on the single junction (TTPA/SubPc) device and photoluminescence absorption results, we confirmed both TTPA/SubPc and SubPc/C 60 junctions are contributing to the exciton dissociation process hence the efficiency enhancement. © 2012 American Institute of Physics.
Persistent Identifierhttp://hdl.handle.net/10722/157175
ISSN
2021 Impact Factor: 3.971
2020 SCImago Journal Rankings: 1.182
ISI Accession Number ID
Funding AgencyGrant Number
Hong Kong Polytechnic UniversityA-PJ28
A-PJ73
HKSAR through UGCPolyU 5112/08E
Funding Information:

J. C. Wang would like to thank J. Ye and W. L. Wong for their help in the measurements of PL and absorption. This work is supported by research grants (Grant Nos. A-PJ28 and A-PJ73) from Hong Kong Polytechnic University. Funding from HKSAR through UGC grant (Grant No. PolyU 5112/08E) is also acknowledged.

References

 

DC FieldValueLanguage
dc.contributor.authorWang, JCen_US
dc.contributor.authorShi, SQen_US
dc.contributor.authorLeung, CWen_US
dc.contributor.authorLau, SPen_US
dc.contributor.authorWong, KYen_US
dc.contributor.authorChan, KLen_US
dc.date.accessioned2012-08-08T08:45:39Z-
dc.date.available2012-08-08T08:45:39Z-
dc.date.issued2012en_US
dc.identifier.citationApplied Physics Letters, 2012, v. 100 n. 5, article no. 053301-
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://hdl.handle.net/10722/157175-
dc.description.abstractA multijunction structure was applied on an organic photovoltaic (OPV) device for broadening the absorption spectrum and enhancing the power conversion efficiency through charge transfer process. By inserting the tris[4-(2-thienyl)]amine (TTPA) into a boron subphthalocyanine chloride (SubPc)/C 60 OPV device, the short circuit current density (J sc) showed a 47.5% increases from 3.05 to 4.50 mA/cm 2 in the bilayer planar heterojunction device, while the open circuit voltage (V oc) remained constant. Based on the single junction (TTPA/SubPc) device and photoluminescence absorption results, we confirmed both TTPA/SubPc and SubPc/C 60 junctions are contributing to the exciton dissociation process hence the efficiency enhancement. © 2012 American Institute of Physics.en_US
dc.languageengen_US
dc.publisherAmerican Institute of Physics. The Journal's web site is located at http://apl.aip.org/en_US
dc.relation.ispartofApplied Physics Lettersen_US
dc.rightsCopyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Applied Physics Letters, 2012, v. 100 n. 5, article no. 053301 and may be found at https://doi.org/10.1063/1.3680253-
dc.subjectBi-layer-
dc.subjectCharge transfer process-
dc.subjectEfficiency enhancement-
dc.subjectExciton dissociation-
dc.subjectHeterojunction devices-
dc.titleShort circuit current improvement in planar heterojunction organic solar cells by multijunction charge transferen_US
dc.typeArticleen_US
dc.identifier.emailShi, SQ: mmsqshi@polyu.edu.hken_US
dc.identifier.emailChan, KL: pklc@hku.hk-
dc.identifier.authorityChan, PKL=rp01532en_US
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1063/1.3680253en_US
dc.identifier.scopuseid_2-s2.0-84863054144-
dc.identifier.hkuros202974-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-84856991279&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume100en_US
dc.identifier.issue5-
dc.identifier.spagearticle no. 053301-
dc.identifier.epagearticle no. 053301-
dc.identifier.eissn1077-3118-
dc.identifier.isiWOS:000300065300078-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridChan, PKL=35742829700en_US
dc.identifier.scopusauthoridWong, KY=7404760030en_US
dc.identifier.scopusauthoridLau, SP=24438112000en_US
dc.identifier.scopusauthoridLeung, CW=22958301300en_US
dc.identifier.scopusauthoridShi, SQ=7402200920en_US
dc.identifier.scopusauthoridWang, JC=54986677300en_US
dc.identifier.issnl0003-6951-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats