File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy

TitleElectronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy
Authors
KeywordsSemiconductor nanomaterials
Flexible electronics
Cardiac electrophysiology
Stretchable electronics
Implantable biomedical devices
Issue Date2012
Citation
Proceedings of the National Academy of Sciences of the United States of America, 2012, v. 109, n. 49, p. 19910-19915 How to Cite?
AbstractCurved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, non-constraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation.
Persistent Identifierhttp://hdl.handle.net/10722/265642
ISSN
2017 Impact Factor: 9.504
2015 SCImago Journal Rankings: 6.883
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorKim, Dae Hyeong-
dc.contributor.authorGhaffari, Roozbeh-
dc.contributor.authorLu, Nanshu-
dc.contributor.authorWang, Shuodao-
dc.contributor.authorLee, Stephen P.-
dc.contributor.authorKeum, Hohyun-
dc.contributor.authorD'Angelo, Robert-
dc.contributor.authorKlinker, Lauren-
dc.contributor.authorSu, Yewang-
dc.contributor.authorLu, Chaofeng-
dc.contributor.authorKim, Yun Soung-
dc.contributor.authorAmeen, Abid-
dc.contributor.authorLi, Yuhang-
dc.contributor.authorZhang, Yihui-
dc.contributor.authorDe Graff, Bassel-
dc.contributor.authorHsu, Yung Yu-
dc.contributor.authorLiu, Zhuang Jian-
dc.contributor.authorRuskin, Jeremy-
dc.contributor.authorXu, Lizhi-
dc.contributor.authorLu, Chi-
dc.contributor.authorOmenetto, Fiorenzo G.-
dc.contributor.authorHuang, Yonggang-
dc.contributor.authorMansour, Moussa-
dc.contributor.authorSlepian, Marvin J.-
dc.contributor.authorRogers, John A.-
dc.date.accessioned2018-12-03T01:21:15Z-
dc.date.available2018-12-03T01:21:15Z-
dc.date.issued2012-
dc.identifier.citationProceedings of the National Academy of Sciences of the United States of America, 2012, v. 109, n. 49, p. 19910-19915-
dc.identifier.issn0027-8424-
dc.identifier.urihttp://hdl.handle.net/10722/265642-
dc.description.abstractCurved surfaces, complex geometries, and time-dynamic deformations of the heart create challenges in establishing intimate, non-constraining interfaces between cardiac structures and medical devices or surgical tools, particularly over large areas. We constructed large area designs for diagnostic and therapeutic stretchable sensor and actuator webs that conformally wrap the epicardium, establishing robust contact without sutures, mechanical fixtures, tapes, or surgical adhesives. These multifunctional web devices exploit open, mesh layouts and mount on thin, bio-resorbable sheets of silk to facilitate handling in a way that yields, after dissolution, exceptionally low mechanical moduli and thicknesses. In vivo studies in rabbit and pig animal models demonstrate the effectiveness of these device webs for measuring and spatially mapping temperature, electrophysiological signals, strain, and physical contact in sheet and balloon-based systems that also have the potential to deliver energy to perform localized tissue ablation.-
dc.languageeng-
dc.relation.ispartofProceedings of the National Academy of Sciences of the United States of America-
dc.subjectSemiconductor nanomaterials-
dc.subjectFlexible electronics-
dc.subjectCardiac electrophysiology-
dc.subjectStretchable electronics-
dc.subjectImplantable biomedical devices-
dc.titleElectronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy-
dc.typeArticle-
dc.description.natureLink_to_OA_fulltext-
dc.identifier.doi10.1073/pnas.1205923109-
dc.identifier.pmid23150574-
dc.identifier.scopuseid_2-s2.0-84870606745-
dc.identifier.volume109-
dc.identifier.issue49-
dc.identifier.spage19910-
dc.identifier.epage19915-
dc.identifier.eissn1091-6490-
dc.identifier.isiWOS:000312347200019-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats