File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Intramolecular Rearrangements Guided by Adaptive Coordination-Driven Reactions Toward Highly Luminescent Polynuclear Cu(I) Assemblies

TitleIntramolecular Rearrangements Guided by Adaptive Coordination-Driven Reactions Toward Highly Luminescent Polynuclear Cu(I) Assemblies
Authors
KeywordsBinary alloys
Coordination reactions
Copper alloys
Fluorescence
Gold alloys
Issue Date2020
PublisherRSC Publications. The Journal's web site is located at http://www.rsc.org/publishing/journals/qi/about.asp
Citation
Inorganic Chemistry Frontiers, 2020, v. 7 n. 6, p. 1334-1344 How to Cite?
AbstractAdaptive coordination-driven supramolecular chemistry based on conformationally flexible pre-organized luminescent Cu(I) precursors paves the way to the ready formation of an intricate supramolecular scaffold possessing intrinsic luminescence properties. A formal ring extension of a tetrametallic Cu(I) metallacycle bearing Thermally Activated Delayed Fluorescence (TADF) properties can thus be carried out, affording a new hexametallic Cu(I) metallacycle 1 bearing modulated solid-state TADF properties. Attempts to adapt this ring extension process to the formation of targeted heterometallic Au2Cu4 and Pt2Cu8 assemblies led to the unexpected and ready formation of the Au2Cu10 and Pt4Cu11 derivatives 2 and 3, respectively. These outcomes strengthen the scope and perspectives of adaptive coordination-driven supramolecular chemistry compared to those of conventional coordination-driven supramolecular chemistry. Indeed, it guides concerted intramolecular fragmentation and redistribution of the particular building blocks used, affording selectively supramolecular scaffolds of higher nuclearity and complexity. The study of the solid-state photophysical properties of the assemblies 2 and 3 highlights enhanced and original behaviors, in which the heavy metal spin–orbit coupling values significantly influence the relaxation processes centered on the Cu(I) metal centers.
Persistent Identifierhttp://hdl.handle.net/10722/285235
ISSN
2019 Impact Factor: 5.958
2015 SCImago Journal Rankings: 1.514
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMoussa, MES-
dc.contributor.authorKhalil, AM-
dc.contributor.authorEvariste, S-
dc.contributor.authorWong, HL-
dc.contributor.authorDelmas, V-
dc.contributor.authorLe Guennic, B-
dc.contributor.authorCalvez, G-
dc.contributor.authorCostuas, K-
dc.contributor.authorYam, VWW-
dc.contributor.authorLescop, C-
dc.date.accessioned2020-08-18T03:51:32Z-
dc.date.available2020-08-18T03:51:32Z-
dc.date.issued2020-
dc.identifier.citationInorganic Chemistry Frontiers, 2020, v. 7 n. 6, p. 1334-1344-
dc.identifier.issn2052-1553-
dc.identifier.urihttp://hdl.handle.net/10722/285235-
dc.description.abstractAdaptive coordination-driven supramolecular chemistry based on conformationally flexible pre-organized luminescent Cu(I) precursors paves the way to the ready formation of an intricate supramolecular scaffold possessing intrinsic luminescence properties. A formal ring extension of a tetrametallic Cu(I) metallacycle bearing Thermally Activated Delayed Fluorescence (TADF) properties can thus be carried out, affording a new hexametallic Cu(I) metallacycle 1 bearing modulated solid-state TADF properties. Attempts to adapt this ring extension process to the formation of targeted heterometallic Au2Cu4 and Pt2Cu8 assemblies led to the unexpected and ready formation of the Au2Cu10 and Pt4Cu11 derivatives 2 and 3, respectively. These outcomes strengthen the scope and perspectives of adaptive coordination-driven supramolecular chemistry compared to those of conventional coordination-driven supramolecular chemistry. Indeed, it guides concerted intramolecular fragmentation and redistribution of the particular building blocks used, affording selectively supramolecular scaffolds of higher nuclearity and complexity. The study of the solid-state photophysical properties of the assemblies 2 and 3 highlights enhanced and original behaviors, in which the heavy metal spin–orbit coupling values significantly influence the relaxation processes centered on the Cu(I) metal centers.-
dc.languageeng-
dc.publisherRSC Publications. The Journal's web site is located at http://www.rsc.org/publishing/journals/qi/about.asp-
dc.relation.ispartofInorganic Chemistry Frontiers-
dc.subjectBinary alloys-
dc.subjectCoordination reactions-
dc.subjectCopper alloys-
dc.subjectFluorescence-
dc.subjectGold alloys-
dc.titleIntramolecular Rearrangements Guided by Adaptive Coordination-Driven Reactions Toward Highly Luminescent Polynuclear Cu(I) Assemblies-
dc.typeArticle-
dc.identifier.emailYam, VWW: wwyam@hku.hk-
dc.identifier.authorityYam, VWW=rp00822-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1039/C9QI01595G-
dc.identifier.scopuseid_2-s2.0-85082298286-
dc.identifier.hkuros313051-
dc.identifier.volume7-
dc.identifier.issue6-
dc.identifier.spage1334-
dc.identifier.epage1344-
dc.identifier.isiWOS:000521125100016-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats