File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Quantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model

TitleQuantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model
Authors
KeywordsForest cooling/warming
Forest biophysical effects
Radiative transfer equation
Land-atmosphere model
Local environmental health
Issue Date2019
PublisherElsevier: Creative Commons Licenses. The Journal's web site is located at http://www.elsevier.com/locate/envint
Citation
Environment International, 2019, v. 132, p. article no. 105080 How to Cite?
AbstractThe well-documented energy balance dynamics within forest ecosystems are poorly implemented in studies of the biophysical effects of forests. This results in limitations to the accurate quantification of forest cooling/warming on local air temperature. Taking into consideration the forest air space, this study proposes a three-layered (canopy, forest air space and soil [CAS]) land surface energy balance model to simulate air temperature within forest spaces (Taf) and subsequently to evaluate its biophysical effects on forest cooling/warming, i.e., the air temperature gradient (∆Ta) between the Taf and air temperature of open spaces (Tao) (∆Ta = Taf − Tao). We test the model using field data for 23 sites across 10 cities worldwide; the model shows satisfactory performance with the test data. High-latitude forests show greater seasonal dynamics of ∆Ta, generating considerable cooling of local air temperatures in warm seasons but minimal cooling or even warming effects during cool seasons, while low-latitude tropical forests always exert cooling effects with less interannual variability. The interannual dynamics of ∆Ta are significantly related to the seasonality of solar geometry and canopy leaf phenology. The differences between forest canopy temperature (Tc) and Tao, which are the two most important terms attributed by the CAS model in impacting Taf, explain a large part of forest cooling and warming (May–July: R2 = 0.35; November–January: R2 = 0.51). The novel CAS model provides a feasible way to represent the energy balance within forest ecosystems and to assess its impacts on local air temperatures globally.
Persistent Identifierhttp://hdl.handle.net/10722/291009
ISSN
2019 Impact Factor: 7.577
2015 SCImago Journal Rankings: 2.684

 

DC FieldValueLanguage
dc.contributor.authorSu, Y-
dc.contributor.authorLiu, L-
dc.contributor.authorWu, J-
dc.contributor.authorChen, X-
dc.contributor.authorShang, J-
dc.contributor.authorCiais, P-
dc.contributor.authorZhou, G-
dc.contributor.authorLafortezza, R-
dc.contributor.authorWang, Y-
dc.contributor.authorYuan, W-
dc.contributor.authorWang, Y-
dc.contributor.authorZhang, H-
dc.contributor.authorHuang, G-
dc.contributor.authorHuang, N-
dc.date.accessioned2020-11-02T05:50:16Z-
dc.date.available2020-11-02T05:50:16Z-
dc.date.issued2019-
dc.identifier.citationEnvironment International, 2019, v. 132, p. article no. 105080-
dc.identifier.issn0160-4120-
dc.identifier.urihttp://hdl.handle.net/10722/291009-
dc.description.abstractThe well-documented energy balance dynamics within forest ecosystems are poorly implemented in studies of the biophysical effects of forests. This results in limitations to the accurate quantification of forest cooling/warming on local air temperature. Taking into consideration the forest air space, this study proposes a three-layered (canopy, forest air space and soil [CAS]) land surface energy balance model to simulate air temperature within forest spaces (Taf) and subsequently to evaluate its biophysical effects on forest cooling/warming, i.e., the air temperature gradient (∆Ta) between the Taf and air temperature of open spaces (Tao) (∆Ta = Taf − Tao). We test the model using field data for 23 sites across 10 cities worldwide; the model shows satisfactory performance with the test data. High-latitude forests show greater seasonal dynamics of ∆Ta, generating considerable cooling of local air temperatures in warm seasons but minimal cooling or even warming effects during cool seasons, while low-latitude tropical forests always exert cooling effects with less interannual variability. The interannual dynamics of ∆Ta are significantly related to the seasonality of solar geometry and canopy leaf phenology. The differences between forest canopy temperature (Tc) and Tao, which are the two most important terms attributed by the CAS model in impacting Taf, explain a large part of forest cooling and warming (May–July: R2 = 0.35; November–January: R2 = 0.51). The novel CAS model provides a feasible way to represent the energy balance within forest ecosystems and to assess its impacts on local air temperatures globally.-
dc.languageeng-
dc.publisherElsevier: Creative Commons Licenses. The Journal's web site is located at http://www.elsevier.com/locate/envint-
dc.relation.ispartofEnvironment International-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectForest cooling/warming-
dc.subjectForest biophysical effects-
dc.subjectRadiative transfer equation-
dc.subjectLand-atmosphere model-
dc.subjectLocal environmental health-
dc.titleQuantifying the biophysical effects of forests on local air temperature using a novel three-layered land surface energy balance model-
dc.typeArticle-
dc.identifier.emailLafortezza, R: raffa@hku.hk-
dc.identifier.authorityLafortezza, R=rp02346-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1016/j.envint.2019.105080-
dc.identifier.pmid31465951-
dc.identifier.scopuseid_2-s2.0-85071274705-
dc.identifier.hkuros318207-
dc.identifier.volume132-
dc.identifier.spagearticle no. 105080-
dc.identifier.epagearticle no. 105080-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats