File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Engineering materials properties in codimension > 0

TitleEngineering materials properties in codimension > 0
Authors
KeywordsC
nanostructure
nanoscale
Issue Date2012
Citation
Journal of Materials Research, 2012, v. 27, n. 3, p. 619-626 How to Cite?
AbstractWhen thin nanomaterials spontaneously deform into nonflat geometries (e.g., nanorods into nanohelices, thin sheets into ruffled forms), their properties may change by orders of magnitude. We discuss this phenomenon in terms of a formal mathematical concept: codimension c = D - d, the difference between the dimensionality of space D, and that of the object d. We use several independent examples such as the edge stress of graphene nanoribbons, the elastic moduli of nanowires, and the thermal expansion of a modified bead-chain model to demonstrate how this framework can be used to generically understand some nanomaterial properties and how these properties can be engineered by using mechanical constraints to manipulate the codimension of the corresponding structure. © 2012 Materials Research Society.
Persistent Identifierhttp://hdl.handle.net/10722/303380
ISSN
2021 Impact Factor: 2.909
2020 SCImago Journal Rankings: 0.788
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBranicio, Paulo S.-
dc.contributor.authorJhon, Mark H.-
dc.contributor.authorSrolovitz, David J.-
dc.date.accessioned2021-09-15T08:25:11Z-
dc.date.available2021-09-15T08:25:11Z-
dc.date.issued2012-
dc.identifier.citationJournal of Materials Research, 2012, v. 27, n. 3, p. 619-626-
dc.identifier.issn0884-2914-
dc.identifier.urihttp://hdl.handle.net/10722/303380-
dc.description.abstractWhen thin nanomaterials spontaneously deform into nonflat geometries (e.g., nanorods into nanohelices, thin sheets into ruffled forms), their properties may change by orders of magnitude. We discuss this phenomenon in terms of a formal mathematical concept: codimension c = D - d, the difference between the dimensionality of space D, and that of the object d. We use several independent examples such as the edge stress of graphene nanoribbons, the elastic moduli of nanowires, and the thermal expansion of a modified bead-chain model to demonstrate how this framework can be used to generically understand some nanomaterial properties and how these properties can be engineered by using mechanical constraints to manipulate the codimension of the corresponding structure. © 2012 Materials Research Society.-
dc.languageeng-
dc.relation.ispartofJournal of Materials Research-
dc.subjectC-
dc.subjectnanostructure-
dc.subjectnanoscale-
dc.titleEngineering materials properties in codimension > 0-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1557/jmr.2011.306-
dc.identifier.scopuseid_2-s2.0-84856442129-
dc.identifier.volume27-
dc.identifier.issue3-
dc.identifier.spage619-
dc.identifier.epage626-
dc.identifier.eissn2044-5326-
dc.identifier.isiWOS:000299877500015-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats