File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Design and fabrication of capillary-driven flow device for point-of-care diagnostics

TitleDesign and fabrication of capillary-driven flow device for point-of-care diagnostics
Authors
Keywordsβ-lactamase
Lab-on-a-chip
Capillarydriven flow
Analytical chemistry
Microfluidics
Colorimetry
Optical detections
Smartphone imaging
Point-of-care (POC) diagnostics
Issue Date2020
Citation
Biosensors, 2020, v. 10, n. 4, article no. 39 How to Cite?
AbstractPoint-of-care (POC) diagnostics enables the diagnosis and monitoring of patients from the clinic or their home. Ideally, POC devices should be compact, portable and operatable without the requirement of expertise or complex fluid mechanical controls. This paper showcases a chip-and-dip device, which works on the principle of capillary-driven flow microfluidics and allows analytes' detection by multiple microchannels in a single microchip via smartphone imaging. The chip-and-dip device, fabricated with inexpensive materials, works by simply dipping the reagents-coated microchip consisting of microchannels into a fluidic sample. The sample is loaded into the microchannels via capillary action and reacts with the reagents to produce a colourimetric signal. Unlike dipstick tests, this device allows the loading of bacterial/pathogenic samples for antimicrobial testing. A single device can be coated with multiple reagents, and more analytes can be detected in one sample. This platform could be used for a wide variety of assays. Here, we show the design, fabrication and working principle of the chip-and-dip flow device along with a specific application consisting in the determination of β-lactamase activity and cortisol. The simplicity, robustness and multiplexing capability of the chip-and-dip device will allow it to be used for POC diagnostics.
Persistent Identifierhttp://hdl.handle.net/10722/303666
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorHassan, Sammer Ul-
dc.contributor.authorZhang, Xunli-
dc.date.accessioned2021-09-15T08:25:46Z-
dc.date.available2021-09-15T08:25:46Z-
dc.date.issued2020-
dc.identifier.citationBiosensors, 2020, v. 10, n. 4, article no. 39-
dc.identifier.urihttp://hdl.handle.net/10722/303666-
dc.description.abstractPoint-of-care (POC) diagnostics enables the diagnosis and monitoring of patients from the clinic or their home. Ideally, POC devices should be compact, portable and operatable without the requirement of expertise or complex fluid mechanical controls. This paper showcases a chip-and-dip device, which works on the principle of capillary-driven flow microfluidics and allows analytes' detection by multiple microchannels in a single microchip via smartphone imaging. The chip-and-dip device, fabricated with inexpensive materials, works by simply dipping the reagents-coated microchip consisting of microchannels into a fluidic sample. The sample is loaded into the microchannels via capillary action and reacts with the reagents to produce a colourimetric signal. Unlike dipstick tests, this device allows the loading of bacterial/pathogenic samples for antimicrobial testing. A single device can be coated with multiple reagents, and more analytes can be detected in one sample. This platform could be used for a wide variety of assays. Here, we show the design, fabrication and working principle of the chip-and-dip flow device along with a specific application consisting in the determination of β-lactamase activity and cortisol. The simplicity, robustness and multiplexing capability of the chip-and-dip device will allow it to be used for POC diagnostics.-
dc.languageeng-
dc.relation.ispartofBiosensors-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectβ-lactamase-
dc.subjectLab-on-a-chip-
dc.subjectCapillarydriven flow-
dc.subjectAnalytical chemistry-
dc.subjectMicrofluidics-
dc.subjectColorimetry-
dc.subjectOptical detections-
dc.subjectSmartphone imaging-
dc.subjectPoint-of-care (POC) diagnostics-
dc.titleDesign and fabrication of capillary-driven flow device for point-of-care diagnostics-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.3390/bios10040039-
dc.identifier.pmid32326641-
dc.identifier.pmcidPMC7235737-
dc.identifier.scopuseid_2-s2.0-85083318537-
dc.identifier.volume10-
dc.identifier.issue4-
dc.identifier.spagearticle no. 39-
dc.identifier.epagearticle no. 39-
dc.identifier.eissn2079-6374-
dc.identifier.isiWOS:000533888900002-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats