File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Effects of ADMA on gene expression and metabolism in serum-starved LoVo cells

TitleEffects of ADMA on gene expression and metabolism in serum-starved LoVo cells
Authors
Issue Date2016
Citation
Scientific Reports, 2016, v. 6, article no. 25892 How to Cite?
AbstractSerum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.
Persistent Identifierhttp://hdl.handle.net/10722/342520
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZheng, Ningning-
dc.contributor.authorWang, Ke-
dc.contributor.authorHe, Jiaojiao-
dc.contributor.authorQiu, Yunping-
dc.contributor.authorXie, Guoxiang-
dc.contributor.authorSu, Mingming-
dc.contributor.authorJia, Wei-
dc.contributor.authorLi, Houkai-
dc.date.accessioned2024-04-17T07:04:24Z-
dc.date.available2024-04-17T07:04:24Z-
dc.date.issued2016-
dc.identifier.citationScientific Reports, 2016, v. 6, article no. 25892-
dc.identifier.urihttp://hdl.handle.net/10722/342520-
dc.description.abstractSerum starvation is a typical way for inducing tumor cell apoptosis and stress. Asymmetric dimethylarginine (ADMA) is an endogenous metabolite. Our previous study reveals the plasma ADMA level is elevated in colon cancer patients, which can attenuate serum starvation-induced apoptosis in LoVo cells. In current study, we evaluated the effects of ADMA on gene expression and metabolism in serum-starved LoVo cells with gene microarray and metabolomic approaches. Our results indicated that 96 h serum starvation induced comprehensive alterations at transcriptional level, and most of them were restored by ADMA. The main signaling pathways induced by serum starvation included cancers-related pathways, pathways in cell death, apoptosis, and cell cycle etc. Meanwhile, the metabolomic data showed serum-starved cells were clearly separated with control cells, but not with ADMA-treated cells in PCA model. The identified differential metabolites indicated serum starvation significantly suppressed TCA cycle, altered glucose and fatty acids metabolism, as well as nucleic acids metabolism. However, very few differential metabolites were identified between ADMA and serum-starved cells. In summary, our current results indicated serum starvation profoundly altered the gene expression and metabolism of LoVo cells, whereas ADMA could restore most of the changes at transcriptional level, but not at metabolic level.-
dc.languageeng-
dc.relation.ispartofScientific Reports-
dc.titleEffects of ADMA on gene expression and metabolism in serum-starved LoVo cells-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1038/srep25892-
dc.identifier.pmid27180883-
dc.identifier.scopuseid_2-s2.0-84975297357-
dc.identifier.volume6-
dc.identifier.spagearticle no. 25892-
dc.identifier.epagearticle no. 25892-
dc.identifier.eissn2045-2322-
dc.identifier.isiWOS:000375901300001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats