File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modelling the strength of ultrafine-grained and nanocrystalline fcc metals

TitleModelling the strength of ultrafine-grained and nanocrystalline fcc metals
Authors
KeywordsDislocation density
Flow stress
Irreversible thermodynamics
Nanocrystalline
Ultrafine-grained
Issue Date2009
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/scriptamat
Citation
Scripta Materialia, 2009, v. 61 n. 12, p. 1113-1116 How to Cite?
AbstractA model for predicting the steady-state flow stress in ultrafine-grained and nanocrystalline face-centred cubic metals based on irreversible thermodynamics is presented. Grain size, temperature and strain-rate effects are incorporated. Nanoscale effects are accounted for via dislocation propagation and annihilation mechanisms invoking an Orowan-type dislocation glide mechanism, and a vacancy-mediated annihilation mechanism at the interface, respectively. Model predictions show good agreement with experiments for pure Cu and Al. © 2009 Acta Materialia Inc.
Persistent Identifierhttp://hdl.handle.net/10722/92878
ISSN
2021 Impact Factor: 6.302
2020 SCImago Journal Rankings: 2.027
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, Men_HK
dc.contributor.authorRiveraDíazdelCastillo, PEJen_HK
dc.contributor.authorBouaziz, Oen_HK
dc.contributor.authorvan der Zwaag, Sen_HK
dc.date.accessioned2010-09-22T05:02:26Z-
dc.date.available2010-09-22T05:02:26Z-
dc.date.issued2009en_HK
dc.identifier.citationScripta Materialia, 2009, v. 61 n. 12, p. 1113-1116en_HK
dc.identifier.issn1359-6462en_HK
dc.identifier.urihttp://hdl.handle.net/10722/92878-
dc.description.abstractA model for predicting the steady-state flow stress in ultrafine-grained and nanocrystalline face-centred cubic metals based on irreversible thermodynamics is presented. Grain size, temperature and strain-rate effects are incorporated. Nanoscale effects are accounted for via dislocation propagation and annihilation mechanisms invoking an Orowan-type dislocation glide mechanism, and a vacancy-mediated annihilation mechanism at the interface, respectively. Model predictions show good agreement with experiments for pure Cu and Al. © 2009 Acta Materialia Inc.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/scriptamaten_HK
dc.relation.ispartofScripta Materialiaen_HK
dc.subjectDislocation densityen_HK
dc.subjectFlow stressen_HK
dc.subjectIrreversible thermodynamicsen_HK
dc.subjectNanocrystallineen_HK
dc.subjectUltrafine-graineden_HK
dc.titleModelling the strength of ultrafine-grained and nanocrystalline fcc metalsen_HK
dc.typeArticleen_HK
dc.identifier.emailHuang, M:mxhuang@hku.hken_HK
dc.identifier.authorityHuang, M=rp01418en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.scriptamat.2009.09.004en_HK
dc.identifier.scopuseid_2-s2.0-70349781813en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-70349781813&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume61en_HK
dc.identifier.issue12en_HK
dc.identifier.spage1113en_HK
dc.identifier.epage1116en_HK
dc.identifier.eissn1872-8456-
dc.identifier.isiWOS:000271434000005-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridHuang, M=23469788700en_HK
dc.identifier.scopusauthoridRiveraDíazdelCastillo, PEJ=6603017212en_HK
dc.identifier.scopusauthoridBouaziz, O=6602183179en_HK
dc.identifier.scopusauthoridvan der Zwaag, S=7006817556en_HK
dc.identifier.citeulike5776826-
dc.identifier.issnl1359-6462-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats