File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1039/c1cp20766k
- Scopus: eid_2-s2.0-80051688345
- PMID: 21660348
- WOS: WOS:000293516200011
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Multiscale quantum mechanics/electromagnetics simulation for electronic devices
Title | Multiscale quantum mechanics/electromagnetics simulation for electronic devices | ||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||
Issue Date | 2011 | ||||||||
Publisher | Royal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/pccp | ||||||||
Citation | Physical Chemistry Chemical Physics, 2011, v. 13 n. 32, p. 14365-14369 How to Cite? | ||||||||
Abstract | The continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demostration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system. © the Owner Societies 2011. | ||||||||
Persistent Identifier | http://hdl.handle.net/10722/138975 | ||||||||
ISSN | 2023 Impact Factor: 2.9 2023 SCImago Journal Rankings: 0.721 | ||||||||
ISI Accession Number ID |
Funding Information: We thank the Hong Kong University Grant Council (AoE/P-04/08), Hong Kong Research Grant Council (HKU700909P, HKUST9/CRF/08, HKU700808P and HKU701307P) and The University of Hong Kong (UDF on Fast Algorithm, Seed Funding Programme for Basic Research 2010-11159085 and 201010159001) for the support. | ||||||||
References | |||||||||
Grants |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yam, C | en_HK |
dc.contributor.author | Meng, L | en_HK |
dc.contributor.author | Chen, G | en_HK |
dc.contributor.author | Chen, Q | en_HK |
dc.contributor.author | Wong, N | en_HK |
dc.date.accessioned | 2011-09-23T05:43:31Z | - |
dc.date.available | 2011-09-23T05:43:31Z | - |
dc.date.issued | 2011 | en_HK |
dc.identifier.citation | Physical Chemistry Chemical Physics, 2011, v. 13 n. 32, p. 14365-14369 | en_HK |
dc.identifier.issn | 1463-9076 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/138975 | - |
dc.description.abstract | The continuous downsizing of modern electronic devices implies the increasing importance of quantum phenomena. As the feature sizes of transistors inch towards 10 nanometer, simulations including quantum effects and atomistic details are inevitable. Here we report a novel hybrid quantum mechanics and electromagnetics (QM/EM) method to model individual electronic components at the nanoscale. QM and EM models are solved in different regions of the system in a self-consistent manner. As a demostration, we study a carbon nanotube based electronic device embedded in a silicon block. Good agreement is obtained between simulation by QM/EM method and full QM treatment of the entire system. © the Owner Societies 2011. | en_HK |
dc.language | eng | en_US |
dc.publisher | Royal Society of Chemistry. The Journal's web site is located at http://www.rsc.org/pccp | en_HK |
dc.relation.ispartof | Physical Chemistry Chemical Physics | en_HK |
dc.title | Multiscale quantum mechanics/electromagnetics simulation for electronic devices | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1463-9076&volume=13&issue=32&spage=14365&epage=14369&date=2011&atitle=Multiscale+quantum+mechanics/electromagnetics+simulation+for+electronic+devices | en_US |
dc.identifier.email | Yam, C: yamcy1@hku.hk | en_HK |
dc.identifier.email | Chen, G: ghchen@hku.hk | en_HK |
dc.identifier.email | Chen, Q: q1chen@hku.hk | en_HK |
dc.identifier.email | Wong, N: nwong@eee.hku.hk | en_HK |
dc.identifier.authority | Yam, C=rp01399 | en_HK |
dc.identifier.authority | Chen, G=rp00671 | en_HK |
dc.identifier.authority | Chen, Q=rp01688 | en_HK |
dc.identifier.authority | Wong, N=rp00190 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1039/c1cp20766k | en_HK |
dc.identifier.pmid | 21660348 | - |
dc.identifier.scopus | eid_2-s2.0-80051688345 | en_HK |
dc.identifier.hkuros | 192294 | en_US |
dc.identifier.hkuros | 210502 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-80051688345&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 13 | en_HK |
dc.identifier.issue | 32 | en_HK |
dc.identifier.spage | 14365 | en_HK |
dc.identifier.epage | 14369 | en_HK |
dc.identifier.isi | WOS:000293516200011 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.relation.project | Experimental and theoretical study of carbon nanotube superconductivity and nanostructured graphene charactistics | - |
dc.relation.project | Theory, Modeling, and Simulation of Emerging Electronics | - |
dc.identifier.scopusauthorid | Yam, C=7004032400 | en_HK |
dc.identifier.scopusauthorid | Meng, L=23995724500 | en_HK |
dc.identifier.scopusauthorid | Chen, G=35253368600 | en_HK |
dc.identifier.scopusauthorid | Chen, Q=18133382800 | en_HK |
dc.identifier.scopusauthorid | Wong, N=35235551600 | en_HK |
dc.identifier.issnl | 1463-9076 | - |