File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1161/CIRCULATIONAHA.106.632430
- Scopus: eid_2-s2.0-33748745399
- PMID: 16952980
- WOS: WOS:000240556700008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Transcriptional genomics associates FOX transcription factors with human heart failure
Title | Transcriptional genomics associates FOX transcription factors with human heart failure |
---|---|
Authors | |
Keywords | Genomics Heart failure Hypertrophy Remodeling Transcription factors |
Issue Date | 2006 |
Publisher | Lippincott Williams & Wilkins. The Journal's web site is located at http://circ.ahajournals.org |
Citation | Circulation, 2006, v. 114 n. 12, p. 1269-1276 How to Cite? |
Abstract | BACKGROUND - Specific transcription factors (TFs) modulate cardiac gene expression in murine models of heart failure, but their relevance in human subjects remains untested. We developed and applied a computational approach called transcriptional genomics to test the hypothesis that a discrete set of cardiac TFs is associated with human heart failure. METHODS AND RESULTS - RNA isolates from failing (n=196) and nonfailing (n=16) human hearts were hybridized with Affymetrix HU133A arrays, and differentially expressed heart failure genes were determined. TF binding sites overrepresented in the -5-kb promoter sequences of these heart failure genes were then determined with the use of public genome sequence databases. Binding sites for TFs identified in murine heart failure models (MEF2, NKX, NF-AT, and GATA) were significantly overrepresented in promoters of human heart failure genes (P<0.002; false discovery rate 2% to 4%). In addition, binding sites for FOX TFs showed substantial overrepresentation in both advanced human and early murine heart failure (P<0.002 and false discovery rate <4% for each). A role for FOX TFs was supported further by expression of FOXC1, C2, P1, P4, and O1A in failing human cardiac myocytes at levels similar to established hypertrophic TFs and by abundant FOXP1 protein in failing human cardiac myocyte nuclei. CONCLUSIONS - Our results provide the first evidence that specific TFs identified in murine models (MEF2, NKX, NFAT, and GATA) are associated with human heart failure. Moreover, these data implicate specific members of the FOX family of TFs (FOXC1, C2, P1, P4, and O1A) not previously suggested in heart failure pathogenesis. These findings provide a crucial link between animal models and human disease and suggest a specific role for FOX signaling in modulating the hypertrophic response of the heart to stress in humans. © 2006 American Heart Association, Inc. |
Persistent Identifier | http://hdl.handle.net/10722/147546 |
ISSN | 2023 Impact Factor: 35.5 2023 SCImago Journal Rankings: 8.415 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hannenhalli, S | en_US |
dc.contributor.author | Putt, ME | en_US |
dc.contributor.author | Gilmore, JM | en_US |
dc.contributor.author | Wang, J | en_US |
dc.contributor.author | Parmacek, MS | en_US |
dc.contributor.author | Epstein, JA | en_US |
dc.contributor.author | Morrisey, EE | en_US |
dc.contributor.author | Margulies, KB | en_US |
dc.contributor.author | Cappola, TP | en_US |
dc.date.accessioned | 2012-05-29T06:04:30Z | - |
dc.date.available | 2012-05-29T06:04:30Z | - |
dc.date.issued | 2006 | en_US |
dc.identifier.citation | Circulation, 2006, v. 114 n. 12, p. 1269-1276 | en_US |
dc.identifier.issn | 0009-7322 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/147546 | - |
dc.description.abstract | BACKGROUND - Specific transcription factors (TFs) modulate cardiac gene expression in murine models of heart failure, but their relevance in human subjects remains untested. We developed and applied a computational approach called transcriptional genomics to test the hypothesis that a discrete set of cardiac TFs is associated with human heart failure. METHODS AND RESULTS - RNA isolates from failing (n=196) and nonfailing (n=16) human hearts were hybridized with Affymetrix HU133A arrays, and differentially expressed heart failure genes were determined. TF binding sites overrepresented in the -5-kb promoter sequences of these heart failure genes were then determined with the use of public genome sequence databases. Binding sites for TFs identified in murine heart failure models (MEF2, NKX, NF-AT, and GATA) were significantly overrepresented in promoters of human heart failure genes (P<0.002; false discovery rate 2% to 4%). In addition, binding sites for FOX TFs showed substantial overrepresentation in both advanced human and early murine heart failure (P<0.002 and false discovery rate <4% for each). A role for FOX TFs was supported further by expression of FOXC1, C2, P1, P4, and O1A in failing human cardiac myocytes at levels similar to established hypertrophic TFs and by abundant FOXP1 protein in failing human cardiac myocyte nuclei. CONCLUSIONS - Our results provide the first evidence that specific TFs identified in murine models (MEF2, NKX, NFAT, and GATA) are associated with human heart failure. Moreover, these data implicate specific members of the FOX family of TFs (FOXC1, C2, P1, P4, and O1A) not previously suggested in heart failure pathogenesis. These findings provide a crucial link between animal models and human disease and suggest a specific role for FOX signaling in modulating the hypertrophic response of the heart to stress in humans. © 2006 American Heart Association, Inc. | en_US |
dc.language | eng | en_US |
dc.publisher | Lippincott Williams & Wilkins. The Journal's web site is located at http://circ.ahajournals.org | en_US |
dc.relation.ispartof | Circulation | en_US |
dc.subject | Genomics | - |
dc.subject | Heart failure | - |
dc.subject | Hypertrophy | - |
dc.subject | Remodeling | - |
dc.subject | Transcription factors | - |
dc.subject.mesh | Adult | en_US |
dc.subject.mesh | Aged | en_US |
dc.subject.mesh | Animals | en_US |
dc.subject.mesh | Cardiac Output, Low - Etiology - Genetics | en_US |
dc.subject.mesh | Dna - Genetics | en_US |
dc.subject.mesh | Forkhead Transcription Factors - Genetics - Physiology | en_US |
dc.subject.mesh | Gene Expression Regulation | en_US |
dc.subject.mesh | Genomics | en_US |
dc.subject.mesh | Humans | en_US |
dc.subject.mesh | Mice | en_US |
dc.subject.mesh | Mice, Inbred Strains | en_US |
dc.subject.mesh | Middle Aged | en_US |
dc.subject.mesh | Oligonucleotide Array Sequence Analysis | en_US |
dc.subject.mesh | Rna - Genetics | en_US |
dc.subject.mesh | Sequence Analysis, Dna - Methods | en_US |
dc.subject.mesh | Transcription, Genetic - Genetics | en_US |
dc.title | Transcriptional genomics associates FOX transcription factors with human heart failure | en_US |
dc.type | Article | en_US |
dc.identifier.email | Wang, J:junwen@hkucc.hku.hk | en_US |
dc.identifier.authority | Wang, J=rp00280 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1161/CIRCULATIONAHA.106.632430 | en_US |
dc.identifier.pmid | 16952980 | - |
dc.identifier.scopus | eid_2-s2.0-33748745399 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33748745399&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 114 | en_US |
dc.identifier.issue | 12 | en_US |
dc.identifier.spage | 1269 | en_US |
dc.identifier.epage | 1276 | en_US |
dc.identifier.isi | WOS:000240556700008 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Hannenhalli, S=6603889650 | en_US |
dc.identifier.scopusauthorid | Putt, ME=7005311984 | en_US |
dc.identifier.scopusauthorid | Gilmore, JM=7102107277 | en_US |
dc.identifier.scopusauthorid | Wang, J=8950599500 | en_US |
dc.identifier.scopusauthorid | Parmacek, MS=7006655564 | en_US |
dc.identifier.scopusauthorid | Epstein, JA=7401891704 | en_US |
dc.identifier.scopusauthorid | Morrisey, EE=7003661185 | en_US |
dc.identifier.scopusauthorid | Margulies, KB=7005687184 | en_US |
dc.identifier.scopusauthorid | Cappola, TP=6602787960 | en_US |
dc.identifier.issnl | 0009-7322 | - |