File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Dynamic multiscale quantum mechanics/electromagnetics simulation method

TitleDynamic multiscale quantum mechanics/electromagnetics simulation method
Authors
Issue Date2012
PublisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/journals/jctcce
Citation
Journal Of Chemical Theory And Computation, 2012, v. 8 n. 4, p. 1190-1199 How to Cite?
AbstractA newly developed hybrid quantum mechanics and electromagnetics (QM/EM) method [Yam et al. Phys. Chem. Chem. Phys.2011, 13, 14365] is generalized to simulate the real time dynamics. Instead of the electric and magnetic fields, the scalar and vector potentials are used to integrate Maxwell's equations in the time domain. The TDDFT-NEGF-EOM method [Zheng et al. Phys. Rev. B2007, 75, 195127] is employed to simulate the electronic dynamics in the quantum mechanical region. By allowing the penetration of a classical electromagnetic wave into the quantum mechanical region, the electromagnetic wave for the entire simulating region can be determined consistently by solving Maxwell's equations. The transient potential distributions and current density at the interface between quantum mechanical and classical regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. Charge distribution, current density, and potentials at different temporal steps and spatial scales are integrated seamlessly within a unified computational framework. © 2012 American Chemical Society.
Persistent Identifierhttp://hdl.handle.net/10722/155746
ISSN
2023 Impact Factor: 5.7
2023 SCImago Journal Rankings: 1.457
ISI Accession Number ID
Funding AgencyGrant Number
Hong Kong University Grant CouncilAoE/P-04/08
Hong Kong Research Grant CouncilHKU700909P
HKUST9/CRF/08
HKU700808P
HKU701307P
HKU718711E
University of Hong Kong2010-11159085
201010159001
201007176060
Funding Information:

We acknowledge the financial support from the Hong Kong University Grant Council (AoE/P-04/08), Hong Kong Research Grant Council (HKU700909P, HKUST9/CRF/08, HKU700808P, HKU701307P and HKU718711E), and The University of Hong Kong (UDF on Fast Algorithm, Seed Funding Programme for Basic Research 2010-11159085 and 201010159001, Small Project Funding 201007176060).

References
Grants

 

DC FieldValueLanguage
dc.contributor.authorMeng, Len_HK
dc.contributor.authorYam, Cen_HK
dc.contributor.authorKoo, Sen_HK
dc.contributor.authorChen, Qen_HK
dc.contributor.authorWong, Nen_HK
dc.contributor.authorChen, Gen_HK
dc.date.accessioned2012-08-08T08:35:09Z-
dc.date.available2012-08-08T08:35:09Z-
dc.date.issued2012en_HK
dc.identifier.citationJournal Of Chemical Theory And Computation, 2012, v. 8 n. 4, p. 1190-1199en_HK
dc.identifier.issn1549-9618en_HK
dc.identifier.urihttp://hdl.handle.net/10722/155746-
dc.description.abstractA newly developed hybrid quantum mechanics and electromagnetics (QM/EM) method [Yam et al. Phys. Chem. Chem. Phys.2011, 13, 14365] is generalized to simulate the real time dynamics. Instead of the electric and magnetic fields, the scalar and vector potentials are used to integrate Maxwell's equations in the time domain. The TDDFT-NEGF-EOM method [Zheng et al. Phys. Rev. B2007, 75, 195127] is employed to simulate the electronic dynamics in the quantum mechanical region. By allowing the penetration of a classical electromagnetic wave into the quantum mechanical region, the electromagnetic wave for the entire simulating region can be determined consistently by solving Maxwell's equations. The transient potential distributions and current density at the interface between quantum mechanical and classical regions are employed as the boundary conditions for the quantum mechanical and electromagnetic simulations, respectively. Charge distribution, current density, and potentials at different temporal steps and spatial scales are integrated seamlessly within a unified computational framework. © 2012 American Chemical Society.en_HK
dc.languageengen_US
dc.publisherAmerican Chemical Society. The Journal's web site is located at http://pubs.acs.org/journals/jctcceen_HK
dc.relation.ispartofJournal of Chemical Theory and Computationen_HK
dc.titleDynamic multiscale quantum mechanics/electromagnetics simulation methoden_HK
dc.typeArticleen_HK
dc.identifier.emailYam, C: yamcy1@hku.hken_HK
dc.identifier.emailChen, Q: q1chen@hku.hken_HK
dc.identifier.emailWong, N: nwong@eee.hku.hken_HK
dc.identifier.emailChen, G: ghchen@hku.hken_HK
dc.identifier.authorityYam, C=rp01399en_HK
dc.identifier.authorityChen, Q=rp01688en_HK
dc.identifier.authorityWong, N=rp00190en_HK
dc.identifier.authorityChen, G=rp00671en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1021/ct200859hen_HK
dc.identifier.scopuseid_2-s2.0-84859595239en_HK
dc.identifier.hkuros202336-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-84859595239&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume8en_HK
dc.identifier.issue4en_HK
dc.identifier.spage1190en_HK
dc.identifier.epage1199en_HK
dc.identifier.eissn1549-9626-
dc.identifier.isiWOS:000302487700004-
dc.publisher.placeUnited Statesen_HK
dc.relation.projectTheory, Modeling, and Simulation of Emerging Electronics-
dc.relation.projectExperimental and theoretical study of carbon nanotube superconductivity and nanostructured graphene charactistics-
dc.identifier.scopusauthoridMeng, L=23995724500en_HK
dc.identifier.scopusauthoridYam, C=7004032400en_HK
dc.identifier.scopusauthoridKoo, S=36544127200en_HK
dc.identifier.scopusauthoridChen, Q=18133382800en_HK
dc.identifier.scopusauthoridWong, N=35235551600en_HK
dc.identifier.scopusauthoridChen, G=35253368600en_HK
dc.identifier.issnl1549-9618-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats