File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Solving the volume integral equation in axisymmetric inhomogeneous media using the conjugate gradient fast Hankel transform method

TitleSolving the volume integral equation in axisymmetric inhomogeneous media using the conjugate gradient fast Hankel transform method
Authors
Issue Date1999
Citation
Radio Science, 1999, v. 34 n. 6, p. 1339-1347 How to Cite?
AbstractIn this paper we present a new method to solve the volume integral equation governing the electromagnetic wave propagation in axisymmetric inhomogeneous media. The integral equation is first formulated using a one-dimensional Green's function and then solved using the conjugate gradient fast Hankel transform method. The use of the one-dimensional Green's function reduces the number of unknowns significantly, thereby accelerating the iterative procedure. Several numerical results are used to show the efficiency and accuracy of this new approach as well as its applications in electromagnetic subsurface sensing.
Persistent Identifierhttp://hdl.handle.net/10722/182617
ISSN
2023 Impact Factor: 1.6
2023 SCImago Journal Rankings: 0.468
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChen, SYen_US
dc.contributor.authorChew, WCen_US
dc.contributor.authorKennedy, WDen_US
dc.date.accessioned2013-05-02T05:16:08Z-
dc.date.available2013-05-02T05:16:08Z-
dc.date.issued1999en_US
dc.identifier.citationRadio Science, 1999, v. 34 n. 6, p. 1339-1347en_US
dc.identifier.issn0048-6604en_US
dc.identifier.urihttp://hdl.handle.net/10722/182617-
dc.description.abstractIn this paper we present a new method to solve the volume integral equation governing the electromagnetic wave propagation in axisymmetric inhomogeneous media. The integral equation is first formulated using a one-dimensional Green's function and then solved using the conjugate gradient fast Hankel transform method. The use of the one-dimensional Green's function reduces the number of unknowns significantly, thereby accelerating the iterative procedure. Several numerical results are used to show the efficiency and accuracy of this new approach as well as its applications in electromagnetic subsurface sensing.en_US
dc.languageengen_US
dc.relation.ispartofRadio Scienceen_US
dc.titleSolving the volume integral equation in axisymmetric inhomogeneous media using the conjugate gradient fast Hankel transform methoden_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1029/1999RS900077en_US
dc.identifier.scopuseid_2-s2.0-0033226089en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0033226089&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume34en_US
dc.identifier.issue6en_US
dc.identifier.spage1339en_US
dc.identifier.epage1347en_US
dc.identifier.isiWOS:000083824300002-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridChen, SY=7410257179en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US
dc.identifier.scopusauthoridKennedy, WD=7202593650en_US
dc.identifier.issnl0048-6604-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats