File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Interpolation of translation matrix in MLFMA

TitleInterpolation of translation matrix in MLFMA
Authors
KeywordsIterative Solver
Multilevel Fast Multipole Algorithm
Numerical Methods
Issue Date2001
PublisherJohn Wiley & Sons, Inc. The Journal's web site is located at http://www3.interscience.wiley.com/cgi-bin/jhome/37176
Citation
Microwave And Optical Technology Letters, 2001, v. 30 n. 2, p. 109-114 How to Cite?
AbstractThe translation matrix for the multilevel fast multipole algorithm (MLFMA) in an FISC (fast Illinois solver code) is calculated directly, and the complexity is O(N3/2), where N is the number of unknowns. For a problem with a small electrical size, the CPU time for calculating the translation matrix can be negligible. But for large problems the calculation time increases significantly. In this paper, we use interpolation to calculate the translation matrix, and the complexity is reduced to O(N). Different interpolation techniques are tested, and it is found that the Lagrange polynomial interpolation with high sampling rates is the best. The saving factor is 10 for the VFY218 at 4 GHz. © 2001 John Wiley & Sons, Inc.
Persistent Identifierhttp://hdl.handle.net/10722/182661
ISSN
2023 Impact Factor: 1.0
2023 SCImago Journal Rankings: 0.376
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorSong, Jen_US
dc.contributor.authorChew, WCen_US
dc.date.accessioned2013-05-02T05:16:19Z-
dc.date.available2013-05-02T05:16:19Z-
dc.date.issued2001en_US
dc.identifier.citationMicrowave And Optical Technology Letters, 2001, v. 30 n. 2, p. 109-114en_US
dc.identifier.issn0895-2477en_US
dc.identifier.urihttp://hdl.handle.net/10722/182661-
dc.description.abstractThe translation matrix for the multilevel fast multipole algorithm (MLFMA) in an FISC (fast Illinois solver code) is calculated directly, and the complexity is O(N3/2), where N is the number of unknowns. For a problem with a small electrical size, the CPU time for calculating the translation matrix can be negligible. But for large problems the calculation time increases significantly. In this paper, we use interpolation to calculate the translation matrix, and the complexity is reduced to O(N). Different interpolation techniques are tested, and it is found that the Lagrange polynomial interpolation with high sampling rates is the best. The saving factor is 10 for the VFY218 at 4 GHz. © 2001 John Wiley & Sons, Inc.en_US
dc.languageengen_US
dc.publisherJohn Wiley & Sons, Inc. The Journal's web site is located at http://www3.interscience.wiley.com/cgi-bin/jhome/37176en_US
dc.relation.ispartofMicrowave and Optical Technology Lettersen_US
dc.subjectIterative Solveren_US
dc.subjectMultilevel Fast Multipole Algorithmen_US
dc.subjectNumerical Methodsen_US
dc.titleInterpolation of translation matrix in MLFMAen_US
dc.typeArticleen_US
dc.identifier.emailChew, WC: wcchew@hku.hken_US
dc.identifier.authorityChew, WC=rp00656en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1002/mop.1234en_US
dc.identifier.scopuseid_2-s2.0-0035919969en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0035919969&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume30en_US
dc.identifier.issue2en_US
dc.identifier.spage109en_US
dc.identifier.epage114en_US
dc.identifier.isiWOS:000169401800011-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridSong, J=7404788341en_US
dc.identifier.scopusauthoridChew, WC=36014436300en_US
dc.identifier.issnl0895-2477-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats