File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1145/2591796.2591826
- Scopus: eid_2-s2.0-84904329113
- WOS: WOS:000485547000003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Conference Paper: Private matchings and allocations
Title | Private matchings and allocations |
---|---|
Authors | |
Keywords | Ascending auction Differential privacy Gross substitutes Matching |
Issue Date | 2014 |
Publisher | Association for Computing Machinery, Inc. The Journal's web site is located at http://www.sigact.org/stoc.html |
Citation | The 4th Annual ACM Symposium on Theory of Computing (STOC 2014), New York, NY., 31 May-3 June 2014. In ACM Symposium on the Theory of Computing Annual Proceedings, 2014, p. 21-30 How to Cite? |
Abstract | We consider a private variant of the classical allocation problem: given k goods and n agents with individual, private valuation functions over bundles of goods, how can we partition the goods amongst the agents to maximize social welfare? An important special case is when each agent desires at most one good, and specifies her (private) value for each good: in this case, the problem is exactly the maximum-weight matching problem in a bipartite graph. Private matching and allocation problems have not been considered in the differential privacy literature, and for good reason: they are plainly impossible to solve under differential privacy. Informally, the allocation must match agents to their preferred goods in order to maximize social welfare, but this preference is exactly what agents wish to hide! Therefore, we consider the problem under the relaxed constraint of joint differential privacy: for any agent i, no coalition of agents excluding i should be able to learn about the valuation function of agent i. In this setting, the full allocation is no longer published---instead, each agent is told what good to get. We first show that with a small number of identical copies of each good, it is possible to efficiently and accurately solve the maximum weight matching problem while guaranteeing joint differential privacy. We then consider the more general allocation problem, when bidder valuations satisfy the gross substitutes condition. Finally, we prove that the allocation problem cannot be solved to non-trivial accuracy under joint differential privacy without requiring multiple copies of each type of good. © 2014 ACM. |
Persistent Identifier | http://hdl.handle.net/10722/201109 |
ISBN | |
ISSN | 2023 SCImago Journal Rankings: 3.322 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hsu, J | en_US |
dc.contributor.author | Huang, Z | en_US |
dc.contributor.author | Roth, A | en_US |
dc.contributor.author | Roughgarden, T | en_US |
dc.contributor.author | Wu, SZ | en_US |
dc.date.accessioned | 2014-08-21T07:13:35Z | - |
dc.date.available | 2014-08-21T07:13:35Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | The 4th Annual ACM Symposium on Theory of Computing (STOC 2014), New York, NY., 31 May-3 June 2014. In ACM Symposium on the Theory of Computing Annual Proceedings, 2014, p. 21-30 | en_US |
dc.identifier.isbn | 978-1-4503-2710-7 | - |
dc.identifier.issn | 0737-8017 | - |
dc.identifier.uri | http://hdl.handle.net/10722/201109 | - |
dc.description.abstract | We consider a private variant of the classical allocation problem: given k goods and n agents with individual, private valuation functions over bundles of goods, how can we partition the goods amongst the agents to maximize social welfare? An important special case is when each agent desires at most one good, and specifies her (private) value for each good: in this case, the problem is exactly the maximum-weight matching problem in a bipartite graph. Private matching and allocation problems have not been considered in the differential privacy literature, and for good reason: they are plainly impossible to solve under differential privacy. Informally, the allocation must match agents to their preferred goods in order to maximize social welfare, but this preference is exactly what agents wish to hide! Therefore, we consider the problem under the relaxed constraint of joint differential privacy: for any agent i, no coalition of agents excluding i should be able to learn about the valuation function of agent i. In this setting, the full allocation is no longer published---instead, each agent is told what good to get. We first show that with a small number of identical copies of each good, it is possible to efficiently and accurately solve the maximum weight matching problem while guaranteeing joint differential privacy. We then consider the more general allocation problem, when bidder valuations satisfy the gross substitutes condition. Finally, we prove that the allocation problem cannot be solved to non-trivial accuracy under joint differential privacy without requiring multiple copies of each type of good. © 2014 ACM. | en_US |
dc.language | eng | en_US |
dc.publisher | Association for Computing Machinery, Inc. The Journal's web site is located at http://www.sigact.org/stoc.html | - |
dc.relation.ispartof | ACM Symposium on the Theory of Computing Annual Proceedings | en_US |
dc.rights | ACM Symposium on the Theory of Computing. Annual Proceedings. Copyright © Association for Computing Machinery, Inc. | - |
dc.subject | Ascending auction | - |
dc.subject | Differential privacy | - |
dc.subject | Gross substitutes | - |
dc.subject | Matching | - |
dc.title | Private matchings and allocations | en_US |
dc.type | Conference_Paper | en_US |
dc.identifier.email | Huang, Z: hzhiyi@hku.hk | en_US |
dc.identifier.authority | Huang, Z=rp01804 | en_US |
dc.identifier.doi | 10.1145/2591796.2591826 | en_US |
dc.identifier.scopus | eid_2-s2.0-84904329113 | - |
dc.identifier.hkuros | 234385 | en_US |
dc.identifier.spage | 21 | en_US |
dc.identifier.epage | 30 | en_US |
dc.identifier.isi | WOS:000485547000003 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 0737-8017 | - |