File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Structural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia

TitleStructural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia
Authors
KeywordsChinese Altaiorth
ogonal compression
pegmatite dyke
Permian collision
petrochronology
Issue Date2019
PublisherAmerican Geophysical Union. The Journal's web site is located at http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/(ISSN)1944-9194/
Citation
Tectonics, 2019, v. 38 n. 1, p. 253-280 How to Cite?
AbstractKinematic significance and time scales of geodynamic processes forming the Altai Orogenic Belt are addressed through structural and petrological analysis combined with zircon and monazite geochronology. The study area is composed of orogenic lower crust represented by a Devonian migmatite-magmatite complex and orogenic middle and upper crust formed by an amphibolite-facies Ordovician sedimentary sequence and a weakly to unmetamorphosed Devonian volcano-sedimentary cover, respectively. The orogenic lower and middle crust were first affected by moderate thickening, which formed subhorizontal Barrovian metamorphic schistosity. This fabric was reworked by deep crustal melting and intrusion of granite sheets during horizontal extension at 400–380 Ma. Soon after, this horizontal fabric was affected by NW-SE shortening generating crustal-scale upright folding associated with subvertical flow of still partially molten orogenic lower crust. During this event, the orogenic lower and middle crust were tightly juxtaposed with upper crustal sedimentary rocks. The last event was related with a NE-SW oriented convergence resulting in large-scale folding and megafold interference pattern in the Permian at 280–273 Ma. Combined with existing regional data, our results allow proposing a Devonian tectonic switching from compression to extension and back to compression, as a response to variations of subduction dynamics between slab advance and retreat in a Pacific-type suprasubduction system. The Permian folding was associated with the progressive northward exhumation of thermally softened crust. This tectonic evolution is in response to the indentation of the rigid Junggar arc domain into the weak Altai wedge. ©2018. American Geophysical Union. All Rights Reserved.
Persistent Identifierhttp://hdl.handle.net/10722/277208
ISSN
2023 Impact Factor: 3.3
2023 SCImago Journal Rankings: 1.662
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJiang, YD-
dc.contributor.authorSchulmann, K-
dc.contributor.authorSun, M-
dc.contributor.authorWeinberg, RF-
dc.contributor.authorStipska, P-
dc.contributor.authorLi, PF-
dc.contributor.authorZhang, J-
dc.contributor.authorChopin, F-
dc.contributor.authorWang, S-
dc.contributor.authorXia, XP-
dc.contributor.authorXiao, WJ-
dc.date.accessioned2019-09-20T08:46:41Z-
dc.date.available2019-09-20T08:46:41Z-
dc.date.issued2019-
dc.identifier.citationTectonics, 2019, v. 38 n. 1, p. 253-280-
dc.identifier.issn0278-7407-
dc.identifier.urihttp://hdl.handle.net/10722/277208-
dc.description.abstractKinematic significance and time scales of geodynamic processes forming the Altai Orogenic Belt are addressed through structural and petrological analysis combined with zircon and monazite geochronology. The study area is composed of orogenic lower crust represented by a Devonian migmatite-magmatite complex and orogenic middle and upper crust formed by an amphibolite-facies Ordovician sedimentary sequence and a weakly to unmetamorphosed Devonian volcano-sedimentary cover, respectively. The orogenic lower and middle crust were first affected by moderate thickening, which formed subhorizontal Barrovian metamorphic schistosity. This fabric was reworked by deep crustal melting and intrusion of granite sheets during horizontal extension at 400–380 Ma. Soon after, this horizontal fabric was affected by NW-SE shortening generating crustal-scale upright folding associated with subvertical flow of still partially molten orogenic lower crust. During this event, the orogenic lower and middle crust were tightly juxtaposed with upper crustal sedimentary rocks. The last event was related with a NE-SW oriented convergence resulting in large-scale folding and megafold interference pattern in the Permian at 280–273 Ma. Combined with existing regional data, our results allow proposing a Devonian tectonic switching from compression to extension and back to compression, as a response to variations of subduction dynamics between slab advance and retreat in a Pacific-type suprasubduction system. The Permian folding was associated with the progressive northward exhumation of thermally softened crust. This tectonic evolution is in response to the indentation of the rigid Junggar arc domain into the weak Altai wedge. ©2018. American Geophysical Union. All Rights Reserved.-
dc.languageeng-
dc.publisherAmerican Geophysical Union. The Journal's web site is located at http://agupubs.onlinelibrary.wiley.com/agu/journal/10.1002/(ISSN)1944-9194/-
dc.relation.ispartofTectonics-
dc.rightsTectonics. Copyright © American Geophysical Union.-
dc.rightsPublished version Copyright [year] American Geophysical Union. To view the published open abstract, go to https://doi.org/[DOI].-
dc.subjectChinese Altaiorth-
dc.subjectogonal compression-
dc.subjectpegmatite dyke-
dc.subjectPermian collision-
dc.subjectpetrochronology-
dc.titleStructural and Geochronological Constraints on Devonian Suprasubduction Tectonic Switching and Permian Collisional Dynamics in the Chinese Altai, Central Asia-
dc.typeArticle-
dc.identifier.emailSun, M: minsun@hku.hk-
dc.identifier.authoritySun, M=rp00780-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1029/2018TC005231-
dc.identifier.scopuseid_2-s2.0-85060736784-
dc.identifier.hkuros305903-
dc.identifier.volume38-
dc.identifier.issue1-
dc.identifier.spage253-
dc.identifier.epage280-
dc.identifier.isiWOS:000458959800014-
dc.publisher.placeUnited States-
dc.identifier.issnl0278-7407-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats