File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Robust Quantitative Phase Imaging Cytometry with Transfer Learning

TitleRobust Quantitative Phase Imaging Cytometry with Transfer Learning
Authors
Issue Date2020
PublisherOptical Society of America.
Citation
OSA Biophotonics Congress: Biomedical Optics: Microscopy Histopathology and Analytics 2020, Washington, DC, USA, 20–23 April 2020. In Proceedings Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), paper MTu2A.3 How to Cite?
AbstractWe present high-throughput quantitative phase imaging cytometry (>10,000 cells/sec) assisted by neural-networked-based transfer learning that critically overcomes the batch effects and enables accurate label-free multi-class lung cancer types classification at single-cell precision (>91%). © 2020 The Author(s)
DescriptionSession: Machine Learning II (MTu2A) - paper MTu2A.3
OSA Technical Digest (Optical Society of America, 2020)
Persistent Identifierhttp://hdl.handle.net/10722/294231
ISBN

 

DC FieldValueLanguage
dc.contributor.authorLo, MCK-
dc.contributor.authorStassen, SV-
dc.contributor.authorSiu, DMD-
dc.contributor.authorTsia, KKM-
dc.date.accessioned2020-11-23T08:28:18Z-
dc.date.available2020-11-23T08:28:18Z-
dc.date.issued2020-
dc.identifier.citationOSA Biophotonics Congress: Biomedical Optics: Microscopy Histopathology and Analytics 2020, Washington, DC, USA, 20–23 April 2020. In Proceedings Biophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN), paper MTu2A.3-
dc.identifier.isbn9781943580743-
dc.identifier.urihttp://hdl.handle.net/10722/294231-
dc.descriptionSession: Machine Learning II (MTu2A) - paper MTu2A.3-
dc.descriptionOSA Technical Digest (Optical Society of America, 2020)-
dc.description.abstractWe present high-throughput quantitative phase imaging cytometry (>10,000 cells/sec) assisted by neural-networked-based transfer learning that critically overcomes the batch effects and enables accurate label-free multi-class lung cancer types classification at single-cell precision (>91%). © 2020 The Author(s)-
dc.languageeng-
dc.publisherOptical Society of America.-
dc.relation.ispartofBiophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN)-
dc.rightsBiophotonics Congress: Biomedical Optics 2020 (Translational, Microscopy, OCT, OTS, BRAIN). Copyright © Optical Society of America.-
dc.titleRobust Quantitative Phase Imaging Cytometry with Transfer Learning-
dc.typeConference_Paper-
dc.identifier.emailStassen, SV: shobana@hku.hk-
dc.identifier.emailTsia, KKM: tsia@hku.hk-
dc.identifier.authorityTsia, KKM=rp01389-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1364/MICROSCOPY.2020.MTu2A.3-
dc.identifier.scopuseid_2-s2.0-85091394362-
dc.identifier.hkuros319047-
dc.identifier.spagepaper MTu2A.3-
dc.identifier.epagepaper MTu2A.3-
dc.publisher.placeUnited States-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats