File Download

There are no files associated with this item.

Supplementary

Conference Paper: Variational inference for cognitive diagnosis models

TitleVariational inference for cognitive diagnosis models
Authors
Issue Date2019
Citation
2019 Education Technology and Computational Psychometrics Symposium (ETCPS), Coralville, IA, USA, 9-10 October 2019 How to Cite?
AbstractThis study proposes the use of variational inference, a fast Bayesian inference alternative to Markov Chain Monte Carlo, for cognitive diagnosis models. Results show that the proposed method is comparable to Expectation-Maximization when the number of attributes ($K$) is moderate, and remains computationally feasible when $K$ is large.
DescriptionPoster presentation
Persistent Identifierhttp://hdl.handle.net/10722/294375

 

DC FieldValueLanguage
dc.contributor.authorJi, D-
dc.contributor.authorDeonovic, B-
dc.contributor.authorde la Torre, J-
dc.contributor.authorMaris, G-
dc.date.accessioned2020-12-02T08:14:09Z-
dc.date.available2020-12-02T08:14:09Z-
dc.date.issued2019-
dc.identifier.citation2019 Education Technology and Computational Psychometrics Symposium (ETCPS), Coralville, IA, USA, 9-10 October 2019-
dc.identifier.urihttp://hdl.handle.net/10722/294375-
dc.descriptionPoster presentation-
dc.description.abstractThis study proposes the use of variational inference, a fast Bayesian inference alternative to Markov Chain Monte Carlo, for cognitive diagnosis models. Results show that the proposed method is comparable to Expectation-Maximization when the number of attributes ($K$) is moderate, and remains computationally feasible when $K$ is large.-
dc.languageeng-
dc.relation.ispartofEducational Technology and Computational Psychometrics Symposium (ETCPS), 2019-
dc.titleVariational inference for cognitive diagnosis models-
dc.typeConference_Paper-
dc.identifier.emailde la Torre, J: j.delatorre@hku.hk-
dc.identifier.authorityde la Torre, J=rp02159-
dc.identifier.hkuros317614-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats