File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1109/TSG.2016.2548565
- Scopus: eid_2-s2.0-84984604132
- WOS: WOS:000391722100027
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications
Title | Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications |
---|---|
Authors | |
Keywords | behavior dynamics big data demand response distributed clustering electricity consumption Load profiling Markov model |
Issue Date | 2016 |
Citation | IEEE Transactions on Smart Grid, 2016, v. 7, n. 5, p. 2437-2447 How to Cite? |
Abstract | In a competitive retail market, large volumes of smart meter data provide opportunities for load serving entities to enhance their knowledge of customers' electricity consumption behaviors via load profiling. Instead of focusing on the shape of the load curves, this paper proposes a novel approach for clustering of electricity consumption behavior dynamics, where 'dynamics' refer to transitions and relations between consumption behaviors, or rather consumption levels, in adjacent periods. First, for each individual customer, symbolic aggregate approximation is performed to reduce the scale of the data set, and time-based Markov model is applied to model the dynamic of electricity consumption, transforming the large data set of load curves to several state transition matrixes. Second, a clustering technique by fast search and find of density peaks (CFSFDP) is primarily carried out to obtain the typical dynamics of consumption behavior, with the difference between any two consumption patterns measured by the Kullback-Liebler distance, and to classify the customers into several clusters. To tackle the challenges of big data, the CFSFDP technique is integrated into a divide-And-conquer approach toward big data applications. A numerical case verifies the effectiveness of the proposed models and approaches. |
Persistent Identifier | http://hdl.handle.net/10722/308919 |
ISSN | 2023 Impact Factor: 8.6 2023 SCImago Journal Rankings: 4.863 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, Yi | - |
dc.contributor.author | Chen, Qixin | - |
dc.contributor.author | Kang, Chongqing | - |
dc.contributor.author | Xia, Qing | - |
dc.date.accessioned | 2021-12-08T07:50:24Z | - |
dc.date.available | 2021-12-08T07:50:24Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | IEEE Transactions on Smart Grid, 2016, v. 7, n. 5, p. 2437-2447 | - |
dc.identifier.issn | 1949-3053 | - |
dc.identifier.uri | http://hdl.handle.net/10722/308919 | - |
dc.description.abstract | In a competitive retail market, large volumes of smart meter data provide opportunities for load serving entities to enhance their knowledge of customers' electricity consumption behaviors via load profiling. Instead of focusing on the shape of the load curves, this paper proposes a novel approach for clustering of electricity consumption behavior dynamics, where 'dynamics' refer to transitions and relations between consumption behaviors, or rather consumption levels, in adjacent periods. First, for each individual customer, symbolic aggregate approximation is performed to reduce the scale of the data set, and time-based Markov model is applied to model the dynamic of electricity consumption, transforming the large data set of load curves to several state transition matrixes. Second, a clustering technique by fast search and find of density peaks (CFSFDP) is primarily carried out to obtain the typical dynamics of consumption behavior, with the difference between any two consumption patterns measured by the Kullback-Liebler distance, and to classify the customers into several clusters. To tackle the challenges of big data, the CFSFDP technique is integrated into a divide-And-conquer approach toward big data applications. A numerical case verifies the effectiveness of the proposed models and approaches. | - |
dc.language | eng | - |
dc.relation.ispartof | IEEE Transactions on Smart Grid | - |
dc.subject | behavior dynamics | - |
dc.subject | big data | - |
dc.subject | demand response | - |
dc.subject | distributed clustering | - |
dc.subject | electricity consumption | - |
dc.subject | Load profiling | - |
dc.subject | Markov model | - |
dc.title | Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1109/TSG.2016.2548565 | - |
dc.identifier.scopus | eid_2-s2.0-84984604132 | - |
dc.identifier.volume | 7 | - |
dc.identifier.issue | 5 | - |
dc.identifier.spage | 2437 | - |
dc.identifier.epage | 2447 | - |
dc.identifier.isi | WOS:000391722100027 | - |